
AFRL-IF-WP-TR -2001-1530

INCREMENTAL UPGRADE OF LEGACY
SYSTEMS (IULS)

Don Winter
David Corman
Pat Goertzen
Tom Herm
John Shackleton

The Boeing Company
P.O. Box 516
St. Louis, MO 63166-0516

APRIL 2001

Final Report for 30 September 1996 – 28 February 2001

Approved for public release; distribution is unlimited.

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

April 2001 Final 09/30/1996 – 02/28/2001
5a. CONTRACT NUMBER

F33615-96-C-1969
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

INCREMENTAL UPGRADE OF LEGACY SYSTEMS (IULS)

5c. PROGRAM ELEMENT NUMBER
63253F

5d. PROJECT NUMBER

3833
5e. TASK NUMBER

04

6. AUTHOR(S)

Don Winter
David Corman
Pat Goertzen
Tom Herm
John Shackleton

5f. WORK UNIT NUMBER

 02
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER

The Boeing Company
P.O. Box 516
St. Louis, MO 63166-0516

 BOEING-STL-00P0074

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
ACRONYM(S)

 AFRL/IFTA

11. SPONSORING/MONITORING AGENCY
 REPORT NUMBER(S)

Information Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7334 AFRL-IF-WP-TR-2001-1530

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

Report contains color.
14. ABSTRACT

This program developed, demonstrated, and is transitioning technology that will enable cost-effective, incremental
improvements to fielded embedded systems. The IULS wrapper technology was flight tested on an F-15 with no
anomalies. IULS software tools automatically generated 99 percent of the wrapper software. This technology provides a
low risk, affordable approach to system upgrades in response to computer-diminished manufacturing resources. It
supports faultless and simultaneous execution of new and legacy software and can be used to accelerate the insertion of
new technology into Air Force weapon systems and information systems.

The IULS program consisted of two tasks. Task 1 was to define incremental software upgrade processes and supporting
avionics architectures, identify and evaluate candidate solutions, and identify the preferred approaches for
demonstration. Task 2 was to develop reusable legacy wrappers, adapt an off-the-shelf CASE toolset to IULS specific
needs, mature the incremental software upgrade process by using the CASE toolset to configure a wrapper for the F-15
OFP, demonstrate the wrapped OFP on a COTS multiprocessor, and transition this technology to customer-selected
weapon systems avionics upgrade programs. IULS emulation technology was successfully demonstrated on C-17
hardware in the C-17 integration laboratory.

15. SUBJECT TERMS

software middleware, software wrappers, CORBA, IULS
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 122
 Michael T. Mills
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-6548 x3583

HES&S 31-15093-1

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

iii

TABLE OF CONTENTS
Section Page

List of Figures.. vi
List of Tables...vii

1 Scope..1

1.1 Identification...1

1.2 Program Overview..1
1.2.1 Program Plan ...1

1.3 Document Overview..2

2 Referenced Documents...3

3 Background..4

3.1 Software Wrappers..4

3.2 Wrapping Process ...5

4 F-15 IULS Demonstration..7

4.1 Customer Upgrade Requirement ..7

4.2 Domain Analysis of Legacy and Upgrade ..8
4.2.1 Characterize Legacy OFP ..8
4.2.2 Characterize Host ..13
4.2.3 Host OFP Model..14

4.3 Designing the Wrapper ...18
4.3.1 Wrapper Initialization..21
4.3.2 Wrapper Control..21
4.3.3 Process And Data Synchronization..23
4.3.4 Shared Data Access...23
4.3.5 External Data Access...26

4.4 Development Environment..26

4.5 Wrapper Implementation ..27
4.5.1 Build/Modify Wrapper Model...27
4.5.2 Build/Modify Wrapper Components..35
4.5.3 Generate Wrapper Code ..35
4.5.4 Link With OFP...37
4.5.5 Evaluate Wrapped System...37

4.6 Test Wrapped System..38

4.7 F-15 Demonstration Summary..38

5 C-17 IULS Demonstration ...40

5.1 Emulator Framework..40
5.1.1 Emulator Trade Study..40
5.1.2 Emulator Strawman Architecture...42
5.1.3 Emulation Environment..42
5.1.4 Emulation Tool Selection ..43

5.2 C-17 Avionics ..44

iv

TABLE OF CONTENTS (continued)
Section Page

5.3 Customer Upgrade Requirement ..45
5.3.1 C-17 APM ...45
5.3.2 C-17 CCU..48
5.3.3 C-17 CIP..48

5.4 CCU Laboratory Demonstration ..50
5.4.1 Phase 1...51
5.4.2 Phase 2...52

5.5 C-17 Technology Demonstration 1 (TD-1)...56

5.6 C-17 Technology Demonstration 2 (TD-2)...59

5.7 C-17 Communications Open System Architecture (COSA) ..61

5.8 C-17 Summary...64

6 Perimeter Attack Radar Characterization System Analysis...66

6.1 IULS Tool-set Applicability to PARCS Hardware Obsolescence...67
6.1.1 SMP Issues ..67
6.1.2 Instruction Set Issues..68
6.1.3 Basic Operating System (BOS) Issues...68
6.1.4 Tactical Operating System (TOS) Issues ...68
6.1.5 Conclusions Regarding IULS Emulation of PARCS ..68

6.2 PARCS System Assessment..68
6.2.1 PARCS System Robustness ...69
6.2.2 BMEWS/PAVE PAWS and COBRA DANE Analyses ...70
6.2.3 Radar Architecture Migration Program..71
6.2.4 PARCS and National Missile Defense ..75

6.3 PARCS and IEIST..76

6.4 PARCS Summary ...76

7 IULS CV-22 Transition ..77

7.1 Foundation Programs ...80

7.2 IULS CV-22 Transition Benefits...81

8 Other Wrapper Applications and Upgrade Technology...83

8.1 Other IULS Applications...83
8.1.1 Open Systems Architecture Wrappers ...83
8.1.2 Wrappers For Scientific Computing ..83
8.1.3 Wrappers For Business and Information System Applications ..83

8.2 Wrappers and Software Reuse..84

8.3 Other Software Upgrade Approaches...84

8.4 Upgrade Tools and Modeling...85

9 IULS Lessons Learned and Conclusion...87

9.1 IULS Process...87

9.2 Upgrade Programmatics...87

9.3 Summary..88

v

TABLE OF CONTENTS (concluded)
Section Page

10 References...89

10.1 Bibliography ...89

Acronyms and Abbreviations ..90

Glossary ..93

Appendix A. Overload Warning System / Common OFP Mapping Table ..94

Appendix B. Overload Warning System Parameter Stubbing Table ...97

Appendix C. Sample WrapidH C++ Listing.. 105

Appendix D. Sample WrapidH Ada Listing .. 108

vi

LIST OF FIGURES
Figure Page

Figure 1. Wrapper Cases ...4
Figure 2. Nominal Legacy OFP Wrapper Process...6
Figure 3. VCC and MPDP Context...8
Figure 4. VCC Processor Configuration..8
Figure 5. VCC DPM Software Structure...10
Figure 6. VCC DPM Control Flow ..11
Figure 7. VCC IOM Software Structure..11
Figure 8. VCC IOM Control Flow...11
Figure 9. ADCP Processor Configuration ...14
Figure 10. Comparison of VCC and ADCP OFP Execution ..14
Figure 11. F-15 VCC Rehost Candidate #1 ..16
Figure 12. F-15 VCC Rehost Candidate #2 ..16
Figure 13. F-15 OWS Demonstration Process..18
Figure 14. Generic Rehost Wrapper Architecture..19
Figure 15. OWS Structure ..20
Figure 16. Typical Data Transform for Preliminary Wrapper Design ...20
Figure 17. OWS Wrapper Architecture ..24
Figure 18. WrapidH Toolset ..27
Figure 19. Upgraded Software Architecture..27
Figure 20. Top Level Wrapper Model...28
Figure 21. Perform OWS 20HZ Wrapper (Part 1)...29
Figure 22. Perform OWS 20HZ Wrapper (Part 2)...31
Figure 23. OWS Transfer to Ada...32
Figure 24. OWS 20 Hz Copy Outputs ..33
Figure 25. Display NZ ...34
Figure 26. Component Properties..35
Figure 27. Component Code ...36
Figure 28. Generate Wrapper Code ..36
Figure 29. Emulator Architecture ...40
Figure 30. Emulator Strawman Architecture ...42
Figure 31. Overview of TRW’s RePLACE Emulator...43
Figure 32. APM Context ...45
Figure 33. APM Hardware Configuration..46
Figure 34. Planned C-17 APM Demonstration...47
Figure 35. Optional C-17 APM Demonstration..47
Figure 36. CCU Laboratory Demonstration Concept..48
Figure 37. CIP Context ...49
Figure 38. CIP Hardware Configuration..49
Figure 39. CCU Demo Gates ..50
Figure 40. Demonstration Definition ...51
Figure 41. Demonstration Schedule ...52
Figure 42. C-17 IRMS Elements Demonstrated in Phase 2 (Logical View)..53
Figure 43. Phase 2 Demonstration Configuration (Physical View)...54
Figure 44. CCU OFP Architecture Components ..54
Figure 45. Overview of Emulated I/O...55
Figure 46. Post Demonstration Risk Assessment ..56
Figure 47. CCU Demonstration Plan (Logical View)...57
Figure 48. CCU Demo Gates ..58
Figure 49. TD-1 Demonstration Configuration...59
Figure 50. CRB CIP Integration Plan..60
Figure 51. COSA Program History...62
Figure 52. Key COSA Program Features ...62
Figure 53. Key COSA / IULS Development Processes ..63
Figure 54. Key COSA / IULS Development Processes (Cont.)...64

vii

LIST OF FIGURES (concluded)

Figure Page

Figure 55. IULS Emulation of PARCS SMP Architecture..71
Figure 56. IULS Emulator and RAM TRM...73
Figure 57. CV-22 Program Roadmap...77
Figure 58. CAAP Program Elements..78
Figure 59. CV-22 Processor Architecture and CRB Migration ..78
Figure 60. Legacy and Demonstration System Architecture ...79
Figure 61. F-15E Options for Rehost ...80
Figure 62. Tech Demo Components Selected for CAAP Relevancy (Preliminary)81
Figure 63. CV-22 Demonstration Software Architecture ..81
Figure 64. CV-22 Demonstration Outputs...82

viii

LIST OF TABLES

Table Page

Table 1. F-15E Upgrade Candidates..7
Table 2. VCC Features and Modules ...9
Table 3. VCC Segments ...10
Table 4. VCC Feature Upgrade Impact..12
Table 5. Example of DPM1 Processing Tasks/Times/Instructions Model...13
Table 6. OWS/COFP Mapping ..24
Table 7. OWS/COFP Stubs ..25
Table 8. Software Component Size ...37
Table 9. Software Throughput Usage...37
Table 10. Emulator Candidates ...41
Table 11. Emulator Trade Study..42
Table 12. C-17 Subsystems..44
Table 13. PARCS System Architecture Analysis ...74
Table 14. PARCS Software Architecture Analysis...75

1

1 Scope

1.1 Identification
This technical report was developed for the Incremental Upgrade of Legacy Systems (IULS) research and
development (R&D) program by The Boeing Company (formerly McDonnell Douglas Aerospace) under
Contract No. F33615-96-C-1969 for Air Force Research Laboratory, Information Directorate AFRL/IFTA.
General Dynamics Information Systems (GDIS) and Honeywell Technology Center (HTC) participated.

1.2 Program Overview
The IULS program is an R&D effort whose main objective is to develop, demonstrate, and transition
technology that enables cost-effective, incremental improvements to fielded weapon system avionics. The
program was structured as two tasks as described in the IULS Technical Proposal. The objectives of
Task 1 were to:
• Define incremental software upgrade processes
• Define the supporting avionics architectures
• Identify and evaluate candidate solutions
• Identify the preferred approaches for demonstration and transition in Task 2.

The objectives of Task 2 were to:
• Develop reusable legacy wrappers
• Adapt an off-the-shelf Computer Aided Software Environment (CASE) toolset to IULS specific needs
• Mature the incremental software upgrade process by using the CASE toolset to configure a wrapper

for the F-15 OFP
• Demonstrate the “wrapped” Operational Flight Program (OFP) on a Commercial Off The Shelf (COTS)

multiprocessor
• Transition this technology to customer-selected weapon system avionics upgrade programs.

1.2.1 Program Plan
During Task 1, a Domain Analysis was performed to describe and analyze current avionics software
architectures and upgrade methods. The analysis task employed SEI’s Feature-Oriented Domain Analysis
methodology (see FODA reference) and included several phases:
• Context Analysis

• Establish the scope and environment of upgrade domains in the F-15 and C-17
• Identify application software classes and host processors
• Describe each domain’s structure and context

• Domain Modeling
• Generate models of the candidate domains including current and future configurations

• Wrapper Modeling and Simulation
• Generate simulations of the candidate domain models and host hardware using PML-VHDL

models as appropriate
• Map the candidate domain models to the proposed wrapper software architecture to identify

potential solutions to the application’s upgrade “problems”
• Evaluate the performance of the candidate solutions

• Identify Best Solution For Demonstration and Transition
• Identify and specify a wrapper framework which implements the solutions
• Define the wrapper process and tool capabilities required

Task 2 built upon the foundation established during Task 1. Task 2 followed a more product-oriented
methodology in which the wrapper development process developed in Task 1 was applied to several
domains. During Task 2, the preferred candidates identified during Task 1 for Demonstration and
Transition, the F-15 and C-17, were matured, and more detailed solutions were developed. In the case of
the F-15, the demonstration was pursued through completion under IULS Task 2. For the C-17, the
demonstration was defined under IULS Task 2 and executed under a separate contract. Under IULS Task
2 additional transition candidates, the Perimeter Attack Radar Characterization System (PARCS) and the
CV-22, were also analyzed according to the Task 1 process. For PARCS application of the process
disclosed that it was not a valid IULS candidate, while application of the process to the CV-22 resulted in
proceeding with upgrade development under a separate contract vehicle.

2

The F-15 efforts included:
• Complete trade to finalize decision on the content of the F-15 IULS demonstration
• Design the wrapper

• Map inputs and outputs
• Map control flow
• Build/modify wrapper model
• Build /modify wrapper components

• Generate wrapper code
• Link with OFP
• Flight test wrapped system
• Evaluate wrapped system

The C-17 efforts included:
• Complete trade to finalize decision on the content of the C-17 IULS demonstration
• Transition demonstration to alternative contractual vehicle leading to an in-context demonstration to be

conducted in C-17 Avionics Integration Area and potential transition to emerging Communications Open
System Architecture (COSA) EMD opportunity

• Complete requisite training and staff familiarization with IULS toolset

The PARCS efforts included:
• Execute domain analysis to determine the feasibility/cost effectiveness of an incremental upgrade

The CV-22 efforts included:
• Complete trade to finalize decision on the content of the CV-22 IULS demonstration
• Transition demonstration to alternative contractual vehicle
• Complete requisite training and staff familiarization with IULS tool-set

1.3 Document Overview
This report provides details of all Task 2 activities, organized along product lines F-15, C-17, PARCS and
CV-22. Task 1 results specific to these Task 2 activities are included in the appropriate product line
discussions. For the F-15 demonstration, a complete description of the IULS Task 1 and Task 2 efforts,
including lessons learned, is provided. For the C-17 details of the efforts executed under IULS Task 1 and
Task 2, which led up to the separately funded C-17 Technology Demonstration, are provided. Aspects of
the separately contracted C-17 Technology Demonstration, which are significant regarding the use of IULS
tools, are also presented. Similarly, for the CV-22, IULS Task 2 activities which led up to the CV-22
Technology Demonstration along with lessons learned during the demonstration are provided herein. The
remaining details of the C-17 and CV-22 demonstrations will be provided in separate reports, prepared
under the contracts governing their execution. For PARCS, the IULS Task 2 efforts, which ultimately
rejected PARCS as an incremental upgrade candidate, are summarized. Details of the IULS Task 2
PARCS analysis have already been provided under a separate IULS submission. This report concludes
with a summary of important lessons learned during execution of Task 2 as well as the other separately
contracted IULS demonstrations.

3

2 Referenced Documents

Boeing Documents

BOEING-STL 99P0072, Software User Manual for the Incremental Upgrade of Legacy Systems,
April 18, 2000

BOEING-STL 00P0021, Software Product Specification for the Incremental Upgrade of Legacy
Systems, April 18, 2000

BOEING-STL 00P0024, Technical Proposal Weapon System Software Technology Support,
Delivery Order 7, IULS CV-22 Technical Demonstration Program, March 2, 2000

BOEING-STL 00P0039, Scientific and Technical Report for the Incremental Upgrade of Legacy
Systems Domain Analysis of the Perimeter Attack Radar Characterization System (PARCS), June
6, 2000

 MDC 96P0018, Incremental Upgrade of Legacy Systems, Volume 1 - Technical Proposal, 6 May
 1996

MDC 97P0104, Incremental Upgrade of Legacy Systems Final Technical Report, Task 1,
November 15, 1997

MDC 98P0040, Incremental Upgrade of Legacy Systems Software Requirements Specification,
June 23, 1998

MDC S20023-1 (1), Computer Program Development Specification for the C-17A Operational
Flight Program, Computer, Propulsion, Data Management, January 27, 1995

Other References

Clark, Peter, Dale Harper, and Kenneth Littlejohn; Automated Reengineering for Legacy Weapon
System Software; paper presented to the 16th Digital Avionics Systems Conference, 26 October
1997.

Corman, Dr. David, Jahn Luke, Patrick Goertzen and Michael Mills, Incremental Upgrade of
Legacy Systems (IULS) – A Fundamental Software Technology for Aging Aircraft, paper
presented to the 4th Joint DOD / FAA / NASA Conference on Aging Aircraft, 15-18 May 2000.

JLC-HDBK-SRAH, Technical Report, Software Reengineering Assessment Handbook, Version
3.0, DOD Joint Logistics Commanders, Joint Group on Systems Engineering (JLC-JGSE), March
1997.

 Wright Laboratory WL/AAKD Contract No. F33615-96-C-1969, 19 December 1996.

4

3 Background
Avionics upgrades are frequent and occur for many reasons, including warfighting enhancements,
countering changing threats, hardware obsolescence, and computer resource under-capacity. In the long
term, the problem of cost-effectively upgrading legacy systems can be mitigated through re-engineering
with the latest-generation hardware and architectural concepts, including object-oriented software design,
which inherently contain and isolate change. On the other hand, legacy avionics software represents a
large investment in development tools, executable code, and ground and flight qualification. Should the
upgrade require complete re-engineering of this legacy software, much of this investment is lost, and many
aircraft programs simply cannot afford the up-front costs associated with re-engineering and complete
requalification.

A typical production avionics upgrade cycle for military aircraft frequently involves embedded software
changes. New versions of mission processor software, which is the most volatile class of avionics
software, are typically released annually and take two years to field from initial definition. One such
upgrade may put resource usage over the contractually imposed spare limit or the actual hardware
capacity. Hardware obsolescence occurs collectively over a longer term as vendors change their business
(military/commercial mix) and technology. Software tools and technology also evolve over a longer period
but may be driven by short-term events such as the introduction and imposition of Ada. The change cycles
are not synchronized so the optimal hardware, software and tool technology, and respective program
funding to support an avionics upgrade at a given point in time are often not available.

One solution to this dilemma is implementing re-engineering incrementally by inserting the latest technology
in smaller, affordable steps, thereby reducing risk and deferring or reducing cost. Software wrapper
technologies hold particular promise in meeting this challenge.

3.1 Software Wrappers
A wrapper is a software adapter or shell, which isolates a software component from other components
and its processing environment (its context). The wrapped component becomes a software object. Its
operational capability (functions and data) is encapsulated, and it can be integrated through its standard
interface with other software objects to form an OFP on a single or distributed processor host. The
wrapper manages the timeliness of all shared and external data, and provides any necessary
transformations.

For upgrades, the goal is to develop the new or re-engineered applications using the latest software
engineering techniques (such as object oriented design) and languages (Ada and C++) with minimal
concessions to the internal structure of the legacy system - as if all other applications were resident in the
new environment. Because the new software is written within the paradigms of OO design and languages,
the wrapper could eventually be removed once all of the application functions had migrated to the new
system. At this time, the legacy system could be removed.

The following figure illustrates three hypothetical cases of implementing software changes using wrappers.

Legacy
Processor

Sync

In

O
ut

Put Get

...110011000111010
1010101010101010
0101110100100110
100010101001010...

Legacy Executable
...11001100011101
0101010101010101
0010111010010011
01000101010010...

Upgrade
Processor

Hybrid

Legacy Source
...1100110001110101
010101010101010010
111010010011010001
1100111001010010...

Rehosted Executable Upgrade
Processor

Sync

In

O
ut

Rehosted
Executable

Put Get

...110011000111010
1010101010101010
0101110100100110
100010101001010...

[Translate]

Compile

Rehost

ISA Emulator Sync

In

O
ut

Legacy
Executable

Put Get

ISA Emulator

...110011000111010
1010101010101010
0101110100100110
100010101001010...

Legacy Executable
...11001100011101
0101010101010101
0010111010010011
01000101010010...

Upgrade
ProcessorDecode

Emulate

?

Fetch

Branch

I/O

?

Emulate

Figure 1. Wrapper Cases

5

Rehost. In the Rehost Case, the legacy processor is obsolete and/or its resources are insufficient to
support additional upgrades. The legacy software is re-hosted to a new processor by translating its
source code and/or recompiling it for the new target. Re-engineering the OFP on the new processor could
not be justified so wrapper components are added to make it “look like” an object in the OFP. New
software features can be added incrementally to the wrapped component, or preferably, designed as new
objects in the OFP.

Boeing’s AV-8B Common Navigation CNAV demonstration is an example of the Rehost case. The legacy
assembly language OFP had previously been hand-translated to C and rehosted on a PowerPC processor
in a prototype COTS Mission Computer. The CNAV object (upgraded navigation features) was interfaced
to the legacy OFP with wrapper-like components (gaskets).

Hybrid. In the Hybrid Case, the legacy processor and its OFP are retained for various reasons (high re-
engineering or logistics costs, etc.), but its resources are insufficient to support additional upgrades. Also,
there is an opportunity to satisfy upgrade requirements with reuse library components that are developed
with better languages (such as Ada95 or C++) and tools. New features can be added incrementally to the
upgrade OFP as objects on the new processor. The objects will be interfaced to the legacy OFP with
wrapper components. As components in the legacy OFP needed changes, they can be re-engineered and
moved to the new processor. At some point in the migration, the remaining legacy components are
rehosted, the legacy processor is upgraded or discarded, and the wrapper components in the new OFP,
associated with the legacy OFP interfaces, can be removed.

The F-15 Demonstration described earlier is an example of the Hybrid Case. The F/A-18 CNAV
demonstration was also a hybrid configuration. The legacy F/A-18 OFP written in assembly language was
running on a bit-slice processor card. CDInt designed a PowerPC processor card that fits in a spare slot
on the legacy backplane. Gasket components were designed in Ada83 and C to run CNAV on the
PowerPC and interface/synchronize it with the full-up Navigation and Displays Modules running on the
legacy processor.

Emulate. Obsolete or underpowered hardware is also addressed in the Emulate Case. The legacy
software is judged to be very costly to re-engineer and/or re-qualify. The object code is executed on the
new processor by an emulation of the legacy processor’s instruction set architecture (ISA). Changes can
still be made to the legacy executable using the legacy compiler and Software Engineering Environment
(SEE). The emulator and other wrapper components make the legacy executable component (binary) look
like an object. Other feature upgrades could be added as objects on the new processor.

The emulator approach has advantages for software domains which are not volatile or complex, such as
the C-17 APM’s OFP, and to safety-critical software which is costly to retest and may be developed as
large, tightly coupled components with autocoders such as FCC OFPs. Hardware and software emulators
have been proposed as part of hardware upgrades for F/A-18 and AV-8B AYK-14 Mission Computers in
the past. However, the OFPs are very volatile, complex, and increasing costly to maintain with the legacy
SEE, and the emulators would consume a large share of throughput.

3.2 Wrapping Process
As with any other software development activity, wrapper creation follows a process and is automated
with tools. However, a wrapper is a specialized type of software, and the process of creating a wrapper
imposes special requirements on the software development activity. This section describes the process
and automation that will be used to create wrappers.

The creation of an OFP wrapper follows the process shown in the Integrated Computer-Aided
Manufacturing Definition Language (IDEF)0 diagram in the following figure. In an IDEF0 diagram,
consumed inputs (e.g., data files) go in the left side of an activity box, generated outputs (e.g., completed
design objects) emerge from the right side, constraints (e.g., requirements, schedules) go in the top, and
mechanisms (e.g., tool support) go in the bottom. In this diagram, shaded boxes represent activities of
greatest opportunity for automation in the IULS program. The subsections below describe tool
mechanisms that support the wrapper design process and the data that flows between them.

6

Figure 2. Nominal Legacy OFP Wrapper Process

This process has been applied in the approach to each of the candidate domains addressed during IULS
Task 2. The remainder of this report will detail the results of applying the IULS wrapper development
process to the F-15, C-17 and CV-22 avionics and to the Perimeter Attack Radar Characterization System
(PARCS).

7

4 F-15 IULS Demonstration
4.1 Customer Upgrade Requirement
The F-15 avionics system is a complex, federated system which is currently fielded in two configurations,
the newer F-15E and the F-15 Multi-Stage Improvement Program (MSIP). The following table lists the F-
15E avionics subsystems that are subject to frequent updates and hence were candidates for the avionics
upgrade demonstration.

Subsystem Major Functions Processor OFP
Language

Vendor
H/W / S/W

Avionics Interface Unit
(AIU)

Collects and processes discretes,
performs signal conditioning, and
packs/unpacks data for the
AVMUX.

1750A Assembly
Language

Boeing / Boeing

Flight Control Computer
(FCC)

Triple-redundant computation of
flight control laws to drive control
surface actuators

3 - 1750 JOVIAL

Lockheed Martin
/ Boeing

Programmable
Armament Control Set
(PACS)

Monitors stores status and controls
armament pre-launch and release.
Provides weapons-avionics
interfaces

Z8002 (Old)
R3000 (New)

AL (Old)
Ada83/C (New)

Dynamic
Controls
Corporation /
DCC

VHSIC Central Computer
(VCC)

Mission systems processing for
navigation, weapon control and
delivery, and cockpit displays

1750 Ada83 LM / Boeing

Multi-Purpose Display
Processor (MPDP)

Receives information from other
subsystems to drive cockpit
controls and displays

2901 Bit
Slice

AL Honeywell /
Honeywell-
Boeing

Table 1. F-15E Upgrade Candidates

The AIU is fairly typical of subsystems that collect and condition discrete and analog signals and put them
on a central avionics multiplex bus (AVMUX) for use by other avionics processors. It interfaces the Up-
Front Controls (alphanumeric screen and keypad) to the VCC and Multi-Purpose Display Processor
(MPDP) via the AVMUX. The FCC’s flight control software domain made it an interesting candidate.
However its upgrade requirements were satisfied recently with faster 1750 processors and more memory.
 Its safety-critical software is not volatile, and retesting is very expensive, involving extensive man-in-the-
loop, hardware-in-the-loop, and flight testing. The PACS has also been upgraded with RISC processors
and Ada83 stores management domain software.

The software features of the VCC and (MPDP) are upgraded yearly and currently make full use of their
computational resources. The VCC hardware and software system was upgraded in 1990. Its OFP was
manually translated from assembly language to Ada83 and hosted on MIL-STD-1750 processors. The
MPDP is primarily a display processor and driver and has been the subject of several hardware
upgrade/replacement studies. Both subsystems must have additional memory, throughput, and I/O bus
capacity to support new requirements for warfighting features, performance, and maintainability. The F-15
Project has developed a new Advanced Display Core Processor which will replace both the VCC and
MPDP. A prototype ADCP was available to the IULS Project, so it was chosen as the upgrade Host for
the wrapper demonstration.

The F-15 VCC was a good candidate for incremental upgrade because it is fairly typical of a mission
processor (Mission Computer), and its software domain is typical of the mission processing domain for a
multi-role fighter aircraft (F-16, F-18, AV-8B). It performs navigation and weapons delivery functions and
manages the cockpit display configuration. Figure 3 represents the context (environment) in which the
VCC (bolded box), the MPDP, and their OFPs operate.

8

Rada r Fl ight
Cont ro l

Compu te r

Avionics
Inter face
Uni t 1&2

Engine
Moni tor ing

System
L & R

E n g i n e
Diagnost ic

Unit
L & R

Improved
Digi ta l

Electronic
E n g i n e

Con t ro l L&R

L A N T I R N
P o d

VHSIC
Cent ra l

Compu te r

Multi-
P u r p o s e
Display

P rocesso r

Inert ia l
Nav igat ion

S e t

Rada r
Warn ing
Rece iver

In te rna l
Coun te r -
Measu res

S e t

S igna l
Data

Recorde r

Att i tude
H e a d i n g

R e f e r e n c e
Sys tem

Air
Da ta

C o m p u t e r

P r o g r a m -
able

A r m a m e n t
Con t ro l

S e t

Display 1553

A v i o n i c s 1 5 5 3

H 0 0 9

Mul t ip lex Bus

Discrete

G P S

Figure 3. VCC and MPDP Context

The VCC manages a federated system with major interfaces formed with MIL-STD_1553 multiplex busses.
 The F-15E contains five major busses. The multi-channel 1553 Avionics Bus links it to the tactical and
navigational sensors and vehicle systems. The 1553 Display Bus links it to the MPDP that drives the
controls and displays. And the H009 Bus (similar to MIL-STD-1553) links it to older navigational sensors
and the stores management system (PACS). The VCC is the primary bus controller (the MPDP is the
backup), and sustains the highest data volume with the MPDP.

4.2 Domain Analysis of Legacy and Upgrade
The first step in the upgrade process was to analyze and characterize the Legacy, new Host and upgrade
system and software. The Feature Oriented Domain Analysis approach (FODA, see SUM References)
was used for this step, which includes three phases: Context analysis, domain modeling, and architecture
modeling. Since F-15 upgrades were previously analyzed and the avionics system is well documented, the
IULS FODA was done at a high level as described in the IULS Task 1 Final Report. For other legacy
systems that are less known/documented, or for more complex upgrades, a formal, detailed analysis is
recommended.

4.2.1 Characterize Legacy OFP
The VCC OFP is executed on six processor cards as shown in the following figure.

Data
Processor
Module 1

 3 MIPS 1750
 512K SRAM

Data
Processor
Module 2

• 3 MIPS 1750
• 512K SRAM

Data
Processor
Module 3
(Backup)

• 3 MIPS 1750
• 512K SRAM

Bulk
Memory
Module

• 1.5 MEG
EEPROM

Bulk
Storage
Module

• 1.5 MEG
EEPROM

I/O Module
1553

• Dual Channel
• 3 MIPS 1750
• 128K SRAM
• Battery Backed

I/O Module
H009-1

• Single Channel
• 3 MIPS 1750
• 128K SRAM
• Battery Backed

I/O Module
H009-2

• Single Chan
• 3 MIPS 1750
• 128K SRAM
• Battery Backed

Timing And
Discrete
Module

• 16 Inputs
• 16 Outputs
• Interrupts

Relay
Card

High
Speed
Data
Bus

1553 Channel 5 & 8 H009 Channel 1/3 & 2/4
Growth

Pi Bus

Discrete I/O

•
•

Segment A• Segment B•

Segment A1• Segment H1• Segment H2•

Figure 4. VCC Processor Configuration

9

The cards contain 1750 processors and receive the OFP load from the non-volatile Bulk Memory Module
at power-up. The two Data Processor Modules (DPMs) do the bulk of the mission processing which is
executed out of SRAM on each card. DPM3 is an in-flight spare whose state gets updated from DPM1
and DPM2 each computational frame with “critical load data” for back-up and restart. The Input/Output
Modules primarily perform bus interface data processing but also do some display format data pre-
processing. The Timing and Discrete Module processes discrete signal input/output/interrupts, contains
the VCC’s clocks/timers, and controls a multiple relay card. All the cards and spare slots communicate via
a dual PI Bus (a high-speed parallel backplane bus) and a test/maintenance bus.

The VCC OFP is structured into 10 functional software modules that generally map to the major features
that the software provides to the aircrew as shown in the following table.

Feature ID Module

Air-to-air weapon targeting and delivery A Air-to-Air

Air-to-ground weapon targeting and delivery G Air-to-Ground

Aircrew controls and displays D Controls & Displays

Flight data recording FR Flight Recorder

Guidance FD Flight Director

Navigation N Navigation

Self-testing, built-in test B Computer Self-Test

In-flight mission simulation Y Simulator Interface

Avionics interface processing - multiplex busses and discretes

VCC execution control X Executive

Processing Support UTIL Utilities (arithmetic)

Program Execution RT Run Time

Table 2. VCC Features and Modules

Each module also executes DPM firmware, which performs built-in functions (BIFs, such as high-speed
arithmetic functions) and a memory loader program (MLP) to download the module’s executable load from
the Bulk Memory Module.

4.2.1.1 Legacy OFP Model
Domain modeling is integral to characterizing the OFP and the Host. It is used to describe aspects of the
behavior and architecture of the software in the chosen domain, which are useful in identifying commonality
and upgrade/wrapper requirements. This section contains informational, behavioral, and feature models
for the F-15 target, including definitions of the domain components and terminology. Subsequent host
processor and wrapper component modeling and simulation were done selectively to determine the
feasibility and resource usage of wrapper architectures.

The VCC OFP consists of five primary segments (consisting of processes, resources, and subprocesses)
which are executed on one of the five cards containing 1750 processors. The following table shows how
the segments and module components are distributed on the processors.

A process consists of Ada packages, one of which is a driver procedure called by the EXEC. Data is
communicated on a module and across the Pi Bus backplane with Ada records in Process Interface
Messages (PIMs). They contain the outputs of a process that are needed by other processes to run.
Critical Local Data Messages (CLDs) are packages containing data needed by the spare processor,
DPM3, to restart a process after reconfiguration. Its state is updated each frame with CLDs from the
other DPMs. The processes from a failed DPM1 or DPM2 are relocatable to DPM3.

Processing and I/O is controlled by the EXEC. It is rate driven with interrupts at 20 Hz, 10 Hz, 5 Hz and 1
Hz. As each process completes, it issues a completion event message with its output PIM. The EXEC

10

checks that all dependencies (other processes, PIM delivery, and resources) are satisfied before
executing the next process.

Module DPM1 Segment
A

DPM2
Segment B

IOM H009
Segment H1

IOM H009
Segment H2

IOM A5690
Segment A1

A/A x x
A/G x
CST x x x x x
C/D x x x x x

EXEC x x x x x
FD x x
FR x

NAV x x
RT x x x x x
SI x x x x x

UTIL x x x x x
I/O Packing/Unpacking x x x

PI Bus
Packing/Unpacking

x x x x x

Table 3. VCC Segments

The following figure is a software structure chart for a DPM, which also illustrates the subdomains on the
card.

Applications Simulation
Interface

Computer
Self-Test

Critical Local
Data

Built-In
Functions

Utilities

Executive Run-Time Process Interface
Messages

Pi Bus
Manager/Driver

Diagnostics Module Load
Program

Figure 5. VCC DPM Software Structure

The application code (such as A/A weapons targeting) is at the highest level along with the in-flight
simulation data insertion code and the computer self-test code. The next level consists of Built-In
Functions (which are called in the application code and executed by a separate chip set on the card), Utility
functions, and CLD data collection for DPM3 updating. The next layer contains the Executive software,
which controls the execution of processes, segments and card I/O, the Ada compiler-generated run-time
code, and PIM data accumulation and dispersion. At the lowest level, next to hardware/microcode, the Pi
Bus driver controls data transmission on the backplane. The on-card diagnostics, which are conducted by
a separate chip set and the BMM-to-DPM SRAM loading program are also at the lowest level.

Virtually all feature upgrades affect the application level domain with some carry-over into the supporting
run-time, EXEC, and PIM/CLD areas. Wrappers or adapters for new processing which are not added to
current Ada packages will be inserted into at the middle layers.

VCC processing is performed in “segments” which are EXEC-scheduled collections of processes,
resources, and subprocesses. The following figure illustrates the sequential flow of control as a segment
executes on the DPM.

11

2 0 H z
P r o c e s s i n g

2 0 H z
P I M

I n p u t s

S u b 2 0 H z
P I M

I n p u t s

2 0 H z
P I M

O u t p u t s

S u b 2 0 H z
P r o c e s s i n g

Figure 6. VCC DPM Control Flow

DPM Execution
• The PIM records are taken off of the Pi Bus and are available to needy processes.
• The Executive schedules the 20 Hz processes, which are ready to run.
• The output PIMs from the completed 20 Hz processes are distributed internally and/or on the Pi Bus.
• Sub 20 Hz PIMs are taken off of the Pi Bus for waiting lower rate processes.
• The 10 Hz, 5 Hz and 1 Hz processes which have their prerequisite data are scheduled.
• The sub 20 Hz PIMs are distributed to users.
• The processor enters a wait state until the next segment (frame).

The following figure illustrates the structure of IOM software.

Display Applications

Critical Local
Data

Built-In
Functions

Utilities

Executive Run-Time Process Interface
Message Pack/Unpack

Pi Bus
Manager/Driver

Diagnostics Module Load
Program

Figure 7. VCC IOM Software Structure

The domains are very similar to the DPM’s. Some control and display processing is done in the top
application layer. The next layer contains the same kind of software as the DPM’s second layer. The third
layer has software, which packs and unpacks (transfers) data between the MUX bus message formats
and the PIM record formats. The IOM executes segments on its I/O driver processor (IOP) and its
general purpose (GP) 1750 processor as shown in the following figure.

2 0 H z
U n p a c k i n g

P I M s

2 0 H z
M U X

Inputs

S u b 2 0 H z
M U X

Inputs

S p e c i a l
2 0 H z

MUX I /O

S u b 2 0 H z
M U X

Outpu ts

S u b 2 0 H z
U n p a c k i n g

P I M s

 S imu la t i on
& D isp lay

P r o c e s s i n g

S u b 2 0 H z
P a c k i n g

I / O P r o c e s s o r

P r o c e s s o r
2 0 H z

P a c k i n g

2 0 H z
M U X

Outpu ts

Disp lay &
O t h e r

P r o c e s s i n g

Figure 8. VCC IOM Control Flow

I/O Processor Execution
• The 20 Hz inputs from MUX participants are solicited and received.
• Special 20 Hz MUX I/O is performed, such as time-critical INS data turnaround to the Radar.

12

• The sub 20 Hz inputs from the MUX are solicited and received.
• 20 Hz messages containing current-frame computed data packed by the GP are sent out over the

MUX.
• Sub 20 Hz messages are sent out.

GP Processor Execution
• At the start of the 20 Hz frame, some simulation and display processing is performed.
• As the current 20 Hz MUX inputs are received by the I/O processor, they are unpacked into PIMs and

distributed over the Pi Bus.
• Once the sub 20 Hz inputting is completed by the IOP, the messages are unpacked into PIMs and

distributed.
• Some display and other processing is performed (such as flight recorder formatting by a H009 GP).
• As PIMs are received from current-frame 20 Hz processes in the VCC, the data is transferred into

messages for the IOP to send.
• Current-frame sub 20 Hz data is packed into messages for the IOP to send.

The following are some of the major feature changes that are tentatively planned for the F-15E in the next
five years. The table indicates which modules will probably be affected by the upgrade, and the breadth of
each change.

Upgrade Feature A/A A/G C/D FD FR NAV SI EXEC UTIL
Add AIM-9X A/A Missile x x x x x
Add Helmet Mounted Cueing
System

x x x x x x x x

Add Combat ID x x x
Add Joint Stand Off Weapon x x x
Add Off-Board Targeting x x x x x x

Table 4. VCC Feature Upgrade Impact

The VCC currently uses almost all of its throughput, memory, and MUX bandwidth. Hardware upgrades
such as additional, faster DPMs and IOMs will be necessary to support the feature upgrades.

As stated above the VCC OFP consists of five primary software segments (A, B, A1, H1, and H2), each
consisting of processes, resources, and sub-processes, that are executed on one of five cards containing
1750 processors. The following table shows a sample characterization of the processing segments and
module components that are in Segment A executing on processor DPM1. A domain model was
constructed with this type of information using Cosmos to prototype approaches to VCC upgrades in
terms of memory, throughput, and Pi Bus backplane usage (via Process Interface Messages, PIMs).

The execution of the VCC OFP can be characterized as follows:
• A single thread per processor.
• No time slicing, no preemption.
• No other tasks executing across a 20 Hz frame boundary.
• Data is transferred (pushed) to consumers upon completion and tasks are run when all inputs are

ready in input PIMs.
• All output data is copied to a common or global location in output PIMs.

13

Model
Process

** ** Application Group (Module) Execution
(Processor Capacity = 3 MIPS)

No. ID Segment Time (ms) Max Inst.

Simulated

Execution /PIM Notes

1 Y SI 20 Hz 0.11 330

2 N SP Data Distribution 1.09 3270

 Send Message 1 to H1

3 A Segment A Launch Zones 1.19 3570

 Wait for Message 4 from A1

4 N Engine Monitor 20 Hz 0.21 630

 Send Message 6 to A1

 Wait for Message 7 from H1

5 N Best Avail Nav 6.33 18990

6 N A/G Target Designator 0.45 1350

7 A 20 Hz Process 6.93 20790

8 D A/A Radar Control 0.70 2100

9 N SP Management 20 Hz 2.05 6150

10 D A/G Radar Control 1.14 3420

11 D OWS 20 Hz 1.51 4530

12 D Jam Cue Control 0.26 780

13 D GCWS OWS 20 Hz 0.85 2550

14 D HUD Control 0.29 870

15 D TSD Control 0.32 960

16 D Targeting Pod Control 1.22 3660

 Send Message 2 to B,A1,H1

17 D Display Control 7.14 21420

18 X EXEC 20 Hz 0.04 120

19 X Complete 20 Hz Processing 0.18 540

20 D OWS 10 Hz 0.38 1140

21 N UFC 0.92 2760

22 D GCWS OWS 10 Hz 1.41 4230

23 X EXEC 10 Hz 0.11 330

24 N SP Management 5 Hz 0.33 990

 Send Message 3 to A1

25 X EXEC 5 Hz 0.02 60

26 X EXEC 1 Hz 1.60 4800

27 B Self Test 0.77 2310

 Totals 37.55 112650

Table 5. Example of DPM1 Processing Tasks/Times/Instructions Model

4.2.2 Characterize Host
The upgrade host, the ADCP, essentially replaces both the VCC and MPDP in the F-15 avionics system
VCC context, as shown in the following figure. The electronic interface between mission processing and
display processing in the ADCP is via a VME backplane instead of the “Display 1553” multiplex bus. The
prototype ADCP used for the demo has a PowerPC CPU on one general-purpose processor (GPP) as
illustrated in the following figure. The ADCP OFP is executed on the GPP processor card.

14

General
Purpose

Processor
• PowerPC
 DRAM/Flash

I/O Module

1553 Channels

Growth

VME Busses

Discrete I/O

•
• Triple Chan 1553

Image

•

• Graphics Controller
• Timers

Processing
Module

Video
Input

Module

Video
Output
Module

Cockpit Displays

PowerPC
 DRAM/Flash•

Serial I/O

• All Segments

Figure 9. ADCP Processor Configuration

4.2.3 Host OFP Model
The ADCP OFP applications are written in C++. The ADCP infrastructure including the “main” routine is
written in object-oriented C++, and runs above a VxWorks RTOS. The Host OFP and additional features
can be compiled using a Green Hills MULTI (C++, Ada, etc.) compiler. Some characteristics of the
Host’s execution are the following:
• “Single Processor Event Driven Executive” with expansion to multiple loosely coupled processors.
• Multiple threads per processor.
• Higher priority threads can preempt lower priority threads.
• A 20 Hz task must complete within a 20 Hz time frame.
• A 10 Hz task may cross a 20 Hz frame but must complete within a 10 Hz time frame.
• A task is “awakened” when its inputs are available.
• A task retrieves the inputs it needs by calling “get” functions.

One way to characterize the Host is to show how the task events and their processes (P) are scheduled.
The following figure contrasts the Scheduler for the original VCC OFP implementation with the ADCP
implementation.

20Hz Frame 20Hz Frame

Ada Executive

20Hz Processes

P1 P2 P3 P4 P1 P2 P3 P5
10Hz

Processes
20Hz Processes 10Hz

Processes

VCC Legacy OFP

ADCP Host OFP

P1 P2 P3

P4 P5

P1 P2 P3

S
cheduler

Infrastructure Event Channel

20Hz
Thread

10Hz
Thread

Figure 10. Comparison of VCC and ADCP OFP Execution

The information from FODA is one of several inputs to the upgrade design. Performance modeling was
performed for the F-15 Project’s upgrade program using the Nuthena Foresight tool. Extensive

15

measurements were made on the Host OFP in the ADCP. This data indicated that the single-processor
ADCP had sufficient throughput, memory, backplane, and I/O bandwidth to execute a reengineered OO
OFP with spare capacity for the additional wrapped upgrade. Therefore, additional domain modeling was
not performed for this case study/demo. It is highly recommended that architectural modeling be
performed for more complex upgrades using tools such as HTC’s MetaH, especially if the upgrade
involves changes in the software topology (e.g., partitioning the processing onto multiple processors or
subsystems).

4.2.3.1 Selecting the Preferred Upgrade Candidate
Several F-15 avionics system candidates for demonstrating IULS wrapper technologies were identified
including three from the VCC (one hybrid and two rehost) and one from the MPDP. The best candidates
involved a VCC upgrade. Part of the rationale supporting this statement is that at the time of selection of
Task 2 F-15 demonstration, the F-15 project was considering an upgrade to the VCC with the objectives
of:

• Mitigating the hardware obsolescence of the 1750 processors and other components.
• Easing the VCC capacity restraints to allow the efficient addition of new functionality.
• Giving the VCC capabilities to exploit Boeing’s Common OFP reuse components for additions

and upgrades.

The emulator approach was not viable for any VCC candidate. The resource capacity relief it would
provide was questionable, and the wrappers required to interface with new COFP components would be
costly.

The first candidate for a low risk yet valuable demonstration was a Hybrid approach. COFP components
would be added to a new GPM as was demonstrated during the initial Common NAV project. For the
Hybrid demonstration the R4400 GPM4 would be used again with the objective of adding at least one
module from the Boeing Common OFP reuse library. The modeling/simulation performed in Task 1
indicated that there were sufficient resources available to accommodate the processing. The legacy OFP
analysis and wrapper building would be done with the new Task 2 tool-set, process, and framework. The
results in terms of engineering cost, wrapper complexity, and wrapper performance would be compared
with those from the manually generated Common NAV wrapper demo.

Two alternative VCC demonstrations, involving a rehost, were identified. Again they had application to F-
15 avionics configurations which will not be fully upgraded or reengineered yet will receive an ADCP-like
unit. The Task 1 plan proposed to analyze legacy OFP components on all five VCC processors and to
utilize the IULS tools and processes to merge them into a single component to be executed on a single
processor card in the ADCP. As part of the Boeing/CDInt R&D project, the capabilities of Ada83/95 target
compilers and the execution of additive loads on a COTS processor were examined. One conclusion
drawn was that a combined, re-hosted F-15 software configuration was viable and portable without
reengineering. The ADCP had spare slots for additional COTS processors that could serve as hosts for
distributed COFP components linked with ORB wrappers.

Early in Task 2, two candidate VCC re-hosts were presented to the F-15 and IULS customer. In the first
candidate, the ability of the IULS tools to wrap legacy components for reuse in a modular architecture on
an OTS processor would be demonstrated. In this case the Ada 83 Overload Warning System (OWS)
Module from VCC Suite 3 would be integrated into the C++ COSSI Operational Flight Program (COFP) as
illustrated in the following figure. Task 2 activities involved in this re-host included:

• Analyze and model reuse component and target system
• Extract multi-rate OWS Module and PIMs from VCC DPM1 Segment A
• Combine OWS components using Ada95, and enclose with wrapper components to

interface with COFP.

16

VMEbus

COSSI
Applications

Image
Processor
Modules

Display
Services

I/O
Modules

I/O Services

Advanced Display Core Processor - PowerPC/C++
Common

OFP
Library

Reuse
Components

PI Bus

General Purpose Processor

IULS
Framework

Library
Wrapper

Components

Infrastructure

Overload
Warning Sys

Wrapper

DPM1

Segment A
Applications

PIMs

IOM
I/O Services

DPM2

PIMs

Segment H1
Applications

PIMs

IOM
I/O Services

Segment H2
Applications

PIMs

IOM
I/O Services

Segment A1
Applications

PIMs

Segment B
Applications

VHSIC Central Computer - 1750A/Ada83
DPM3

PIMs

Segment C
Applications

Figure 11. F-15 VCC Rehost Candidate #1

In the second candidate, the ability of the IULS tools to rehost a legacy OFP onto a new OTS processor
would be demonstrated. It would be upgraded with COFP reuse components from the Common OFP
Library as part of the rehost. This is a more challenging case in which two wrappers are required as
illustrated in the following figure. Wrapper 1 adapts merged Ada83 modules and PIMs from VCC Suite 3.
Wrapper 2 adapts the COFP augmented with the Navigation Data External Environment from the COFP
Library. Task 2 activities involved in this rehost included:
• Analyze and model legacy OFP, reuse component, and target system
• Extract TBD Ada83 modules and PIMs from Suite 3 VCC OFP
• Combine into one segment using Ada95, and enclose with wrapper components to execute on one

general purpose processor (employ COSSI OFP essentially as a wrapper)
• Add/host a COFP reuse component using a wrapper including infrastructure and ORB (if

necessary)

F-15 Demo Approach #2
Rehost Legacy OFP And Add Reuse Component

VMEbus

GPPGPP

Merged
Applications

Wrapper-1

IPMs

Display
Services

IOMs

I/O Services

DPM1

Segment A
Applications

PIMs

IOM
I/O Services

DPM2

PIMs

Segment H1
Applications

PIMs

IOM
I/O Services

Segment H2
Applications

PIMs

IOM
I/O Services

Segment A1
Applications

PIMs

Segment B
Applications

VCC

ADCP Common
OFP

Library
Reuse

Components

IULS
Framework

Library
Wrapper

Components

DPM3

PIMs

Segment C
Applications

PI Bus

Wrapper-2

COSSI
OFP

Upgrade App.

Figure 12. F-15 VCC Rehost Candidate #2

Early in Task 2, Approach #1 was identified as the preferred approach and with customer concurrence it
was selected for the Task 2 F-15 Demonstration. By this time the PowerPC had been chosen over the
R4400 as the upgrade (target) processor due to availability and compliance with design standards.
Rational governing the selection of Approach#1 included:

17

• It supported evolution to a C++ (COFP) F-15 OFP baseline - the plan (at that time) was to evolve
to a COFP software baseline for the F-15

• It exercised all elements of the IULS rehost tool-set
• It was lower risk and cost than Approach #2 -- It would leave sufficient funding to pursue a C-17 IULS

Demonstration plus other IULS transition candidates.

4.2.3.2 Characterize Host Upgrade
A number of upgrade approaches were examined by the F-15 Project (and subsets were considered for
the IULS demonstration) including:

1. Recompile the entire F-15 Ada83 OFP for the new Host processor and rewrite/replace/wrapper
any code necessary to operate with the new COTS I/O, backplane, and integrated display driver
hardware. (This is a traditional approach.)

2. Recompile just the applications (features) and rehost them on a new COTS Infrastructure, real-
time operating system (RTOS) and hardware-interface software layers. The Infrastructure
replaces the Executive functionality and adds ORB multi-processing capability, allowing the OFP to
be physically partitioned. The applications interface to the lower levels with wrappers/adapters.

3. Re-engineer the entire OFP in an object-oriented, layered architecture (including the new
Infrastructure, RTOS and hardware-interface layers), drawing common feature code from a reuse
library, and using wrappers/adapters to adjust interfaces.

4. Use a combination of 2 and 3 and take advantage of the multi-processor Infrastructure and RTOS:
After re-establishing the feature baseline on the new Host, add new OO features to another OFP
partition or other processors, drawing from a reuse library.

All approaches could use IULS technology to some extent, but all would be very large-scale efforts. The
F-15 Project took Approach 3 to re-engineer a subset of Production F-15 OFP functionality and run on the
new ADCP as part of the “COSSI” R&D program

A limited version of Approach 4 was chosen for the IULS OWS Demonstration since it fit within the scope
of the project yet exercised most of the IULS technology in a realistic scenario on a real avionics platform.
 It illustrates how a new feature designed with one language and/or architecture can be merged in a host
with a different language/architecture using a multi-lingual wrapper. Multi-lingual OFPs are starting to be
used in mission-critical systems. They can make efficient use of multi-lingual reuse libraries, and are made
possible in part by new-generation multi-lingual system/software development tools (such as Rational
Rose and Green Hills MULTI), and languages (such as Ada95 with built-in interfaces to other
languages).

4.2.3.3 Selecting the Preferred Wrapper Approach
Since the OWS upgrade is more than a re-host/re-compile of the OWS software on another hardware
system it is classified as a hybrid upgrade with the OWS function in a new software partition formed with a
wrapper. The ADCP/OFP combination was a convenient demonstration Host onto which the additional
upgrade feature could be “wrapped”. The performance goals of the demo were simply to reproduce the
OWS behavior and have the worst-case path of the new system execute within the required 20 Hz frame
rate. This was judged to be possible based on performance modeling of OWS within the VCC OFP,
worst-case measurements of the baseline Host OFP (with spare capacity), and estimates of the execution
of the wrapper derived from a preliminary WrapidH model.

For the Host “COSSI” OFP, a subset of the VCC OFP features were re-engineered or implemented with
components from the Boeing Common Software Reuse Library (such as the Infrastructure/ORB) providing
a baseline upgraded Host software environment. The Overload Warning System feature was picked as an
additional upgrade feature because it is unique to the F-15 and not available from a reuse library. OWS
source code from VCC OFP Segments on DPM1 and DPM2 were ported to the ADCP GPP.

The OWS function consists of a series of calculations that transform the inputs (primarily weapon and fuel
load and flight-state) into the overload warning outputs including cockpit display features. The software
interface to the legacy OWS function consists of a series of process interface messages (PIMs) and
Critical Load Data (CLD). The OWS function and associated PIMs and CLDs are written in Ada and can
be compiled by an Ada95 compiler. Their memory layout is fixed by Ada representation specifications.
The OWS function assumes that the PIMs are updated by the Infrastructure before it is called. This

18

assumption constitutes a timing dependency and a push data flow architecture.

In the legacy F-15 host, the infrastructure around the OWS function consists of a software executive layer
(EXEC) running on each processor module. The 32-bit Parallel Interface (PI) bus transfers PIMs and
CLDs between the various functions in the distributed processing system.

The overall sequence of events within the DPM processing was shown in Table 5 for both the OWS 20 Hz
and 10 Hz cycles. The queued message and OWS components were shown in bold. The timing data can
be characterized as performance data, however the main issue is not to improve the performance but to
be able to re-use the OWS code and have it run correctly and reduce the development and testing effort.

There are obviously many differences between the legacy VCC hardware and its software architecture and
the new Host processor. The VCC/OWS was a single thread-per-process but multi-process system
running on multiple loosely coupled processors. The target is a multi-threaded multi-process system
typical of the latest real-time mission processors. A control and data adapter was necessary to make use
of the existing OWS code intact yet make it work within the new processing environment.

Subsequent to selecting the problem domain to be addressed in the IULS F-15 Demonstration, a multi-step
process was used to execute the program. The F-15 OWS Demonstration process is shown in the
following figure. Key features include:
• Continuation of the Task 1 Domain Analysis through the Task 2 Wrapper Generation
• Development of the WrapidH Tool using the Honeywell Domain Modeling Environment (DoME)
• Wrapping the F-15 Ada OWS Functionality and integrating it into the COFP
• Validation of the Wrapped Software using F-15 Simulation Tools
• Live Flight Demonstration of the Validated Product

Get Get Put PutSemaphore

Legacy Signature

Frame
S y n c

Tactical
S t a t e

Aircraft
State

Guidance
Mode P V I

Legacy Controller

Wrapper Architecture

Domain Modeling Environment
(Honeywell’s DoME)

Design
Database

Graphical
Design
Editor

Auto-code
Generator

Document
Generator

Architecture
& Design
Analyzer

Legacy Wrapper
Toolset

...1100110001110101010101
010101010010111010010011
010001010100100110101010
111110001001010010101110
100010100101010110101010
0101010101001010101010...

Legacy OFP

Legacy Wrapper

Sync

In

O
ut

...1100110001110101010101010101
01001011101001001101000101010
01001101010101111100010010100
10101110100010100101010110101
01001010101010010101010101...

Put Get
ISA

Wrapper
Model

Wrapper
Architecture

Develop
Framework /

Toolset

Framework /
Toolset

Task 1 Domain Analysis

Analyze
Wrapper
Domain

Develop
Wrapper

Architecture

Task 2 Automated Wrapper Generation

Flight Test Demo

• Update Model
• Update Shelf
• Update Tool Design

• Domain Analysis
• Initial Model
• Initial Shelf Components
• Initial Tool Design

DTE, STF,
AIC, Flight
Sim

Tune the Toolset Using
Real-World Examples

Validate the Wrapped
S/ W Using Simulation

Figure 13. F-15 OWS Demonstration Process

4.3 Designing the Wrapper
As identified in Task 1 and shown in the following figure, the general framework of the Rehost wrapper
architecture is largely independent of the technique used in an upgrade. The wrapper services associated
with the rehost mode are as follows:
• Wrapper Initialization
• Wrapper control - the wrapper process executes as a task of the host Executive
• Process and data synchronization

• Interrupts and Synchronization
• Clock services

• Shared data access

nisn

19

• “Get” - access to legacy memory space by a process
• “Put” - move data to legacy memory space

• External data access
• Input handler
• Output handler

Wrapper
Interface

Legacy OFP
Memory

Space Events

Sync/Timers/
Controls/Reset

I/O Data Flow

Drivers/Reformat

Data Gateway

Get/Put

Hybrid Processor

Figure 14. Generic Rehost Wrapper Architecture

For the selected demonstration, the Legacy OFP includes three Ada83 functional threads, as shown in the
following figure. These threads, execute at specified rates under control of the Ada executive and draw
their inputs from other Ada threads through the “PIMs” shown in the figure. Each PIM represents one or
more data items used by the three OWS threads. The interface from the OWS threads to the other Ada
threads is through the three output “PIMs” shown in the figure. There is a one-to-one relationship between
the threads and the similarly named output PIM. The challenge for the demonstration is to develop the
“Wrapper Interface” which integrates this Legacy OFP into the C++ COFP. In order to accomplish this,
each of the Rehost wrapper services listed above must be supplied.

20

D_ADC_20_HZ_INPUT_PIM
•Air Data
D_AFCS_20_HZ_INPUT_PIM
•Flight Control
D_AIU_20_HZ_INPUT_PIM
•Avionics Interface Unit
D_GEN_10_HZ_UNPACK_PIM
•Aircraft Stores
D_GEN_20_HZ_UNPACK_PIM
•Discretes
D_HUD_CONTROL_PIM
•AOA Limit
D_INS_20_HZ_INPUT_PIM
•INS Data
D_MPDP_20_HZ_INPUT_PIM
•MPDP Outputs
D_PACS_20_HZ_INPUT_PIM
•PACS Outputs
I_PACS_CMBT_TRNG_BUFFER
•Nuclear Training Stores
X_EXECUTIVE_CONTROL
•Ada Executive Outputs

INPUTS
From Other Threads

ADA_EXECUTIVE
•Functional Threads at Fixed
Rates

PERFORM_OWS_10_HZ
•Controls Clearing of OWS Recall
Table

PERFORM_OWS_10_HZ_NZ_
WARN
•NZ Allowable & Warning Ratio
Limits

PERFORM_OWS_20_HZ
•Compare Loads to Limits & Post
Results

PROCESSING OUTPUTS
To Other Threads

D_OWS_10_HZ_PIM

D_OWS_10_HZ_NZ_
WARN_PIM

D_OWS_20_HZ_PIM

Figure 15. OWS Structure

After several potential wrapper approaches were explored, the resulting top-level wrapper design
employed a combination of C++ and Ada95 code. The C++ components communicate with Host C++
OFP, and the Ada components are used to communicate with the legacy OWS Ada83. One objective that
was satisfied by this approach was to leave both the new host and OWS legacy code unchanged. An
example of the data transforms and conversions that are necessary in the wrapper implementation for one
of the OWS functions is shown in the following figure.

Intermediate
Input PIM

Intermediate
Output PIM

Get_Position

OWS
Input PIM

OWS
Output PIM

Radians_To_Degrees

Is_IPE_InstalledGet_Left_Engine

Get_Right_Engine

Get_DataDisplay_Data

AdaC++
WrapperCOSSI OWS

Figure 16. Typical Data Transform for Preliminary Wrapper Design

The remainder of this section discusses detailed solutions for each of the wrapper services to this top-level
design. The first subsection discusses initialization issues including Ada elaboration. The second
subsection discusses scheduling issues associated with execution of the OWS Functional Threads under
the Event Sequencer chosen for the Object Oriented COFP. The next subsection addresses Process and
Data Synchronization. For the OWS demonstration, there was little demand in this area. The next

21

subsection addresses shared data access. This was the major focus of the OWS demonstration and
much detail regarding the solution is presented. Finally External Data Access is discussed.

4.3.1 Wrapper Initialization
The OWS Demonstration presented two initialization challenges: Ada Elaboration and Execution of OWS
First Pass Logic. Elaboration is needed to initialize the various Ada OWS PIMs, which are incorporated
inside the wrapper. Using WrapidH, an Ada INITIALIZE.PIM procedure was created to Elaborate the
PIMs used by the OWS logic. In addition, Ada logic was created to initialize flags, which needed to be
stubbed, as discussed under the topic “Access required from functions not yet available in the COFP “
below. This stub initialization logic was also incorporated into the Ada INITIALIZE.PIM procedure. The
C++ procedure, which executes the OWS 20HZ logic, was designed to call the Ada initialization procedure
on the first execution pass.

4.3.2 Wrapper Control
The F-15 IULS Demonstration required integrating three legacy functional threads,
PERFORM_OWS_10_HZ, PERFORM_OWS_10_HZNZ_WARN, and PERFORM_OWS_20_HZ into the
Event Sequencer structure used for controlling the execution of objects in the COFP. Factors considered
in designing the Wrapper Control included:
• Tolerances in the rate at which each functional thread is executed
• Tolerances in the latency of execution of each thread
• Pre-requisites for execution of each task
• Input data coherency requirements
• Output data coherency and dependency requirements.

4.3.2.1 Tolerances In the Rate At Which Each Functional Thread Is Executed
Program designs generally have a minimum rate at which a thread must be executed but rarely have a
hard limit on the maximum rate. In general, the maximum rate is limited only to maintain computer resource
margins. A design in which the minimum rate is guaranteed and the maximum rate is allowed to rise, given
excess resource reserves is generally acceptable and is even desirable if the increased rate of execution
tends to improve the overall utility of the system.

For the IULS OWS Demonstration, analysis of the legacy code indicated that the true scheduling driver for
the OWS_10_HZ and OWS_10_HZ_NZ_WARN tasks is that they execute at least 10 times per second but
a higher rate would be acceptable. The 10 hertz rate was originally chosen to enable timely execution
subsequent to a change in vehicle configuration such as release of stores or weight off wheels. Since the
computations involved are relatively insensitive to vehicle dynamics, minimizing the delay between sensor
inputs and OWS computations was not a design driver. The OWS_20_HZ rate was selected to take
advantage of the rate of input of CAE Normal Acceleration. Again maintaining the exact rate was not seen
as critical. A 20 HZ rate ensures that the peak loads measured by OWS are representative of aircraft
loading. This is important from both a flight safety and maintenance viewpoint. However, capturing the
exact peak load is not considered critical. Again, a 20 HZ or higher rate of execution was deemed
acceptable.

4.3.2.2 Tolerances In The Latency Of Execution Of Each Thread
Older designs, optimized for efficiency, sometimes utilize numerical integration techniques in which the time
interval has been “hard wired” into the code or into numerical coefficients. In these designs, inaccuracies in
the execution interval produce proportional errors in the integration accuracy. Most modern designs are
tolerant to variations in the interval between thread executions. Analysis of the OWS design indicated that
there is negligible sensitivity to variations in the period between thread execution.

4.3.2.3 Pre-requisites For Execution Of Each Task
In general, it is desirable to have a thread execute when a coherent new set of inputs becomes available.
This can be accommodated by delaying initiation of the thread until all requisite inputs are available or by
employing logic which delays portions of the execution until the requisite inputs become available. In the
OWS design, the task structure was developed to ensure that requisite critical coherent data was available
before initiation of each thread. For the OWS_10_HZ task, current INS data is required as well as the
most recent Air Vehicle Configuration (stores). The OWS_10_HZ_NZ_WARN thread should execute when

22

the latest INS, AFCS and ADP data are available. It should also execute after the OWS_10_HZ thread is
complete. The OWS_20_HZ task should also execute when the latest INS, AFCS and ADP data are
available. It should also follow the OWS_10_HZ_NZ_WARN thread.

4.3.2.4 Output Data Coherency And Dependency Requirements
Execution control may also be dictated by the needs of other threads, which use the outputs of the thread
being scheduled. In the OWS case, the outputs drive displays and cockpit voice. The Ada OFP design is
such that the OWS processing is completed before the display and voice generation processing is entered
and the display and voice generation complete before the start of the next OWS cycle. Since there is no
possibility of the display or voice generation functions interrupting the OWS threads or vice versa, output
data coherency is not an issue. However, in the event driven executive scheme used for the COFP, it
could become an issue if the display generation were partially complete when the requisite events for the
next execution of an OWS thread were satisfied. In this case the display and/or voice generation function
might be interrupted after a partial output and complete with refreshed (non-coherent) data. For the
demonstration, this was considered to be of such low probability that it was neglected. In an eventual
operational event-driven OFP implementation, it might be best to implement a display complete event as
part of the OWS thread trigger mechanism. Again significant systems engineering effort would be required
before such a design would be pursued.

4.3.2.5 Control Implementation for the IULS Demonstration
The Wrapper Execution Control design chosen for the IULS demonstration featured the following:
• The PERFORM_OWS_10_HZ_Wrapper thread should be executed whenever an INS event occurs.

Because the COFP hardware/software configuration used for the demonstration had no capability for
sensing changes in the aircraft external stores configuration, all stores data for the demonstration were
stubbed, and therefore no attempt was made to tie execution of this task to changes in the external
stores configuration.

• The PERFORM_OWS_10_HZ_NZ_WARN_Wrapper should be executed whenever an INS, AFCS and
ADCP event has occurred and the PERFORM_OWS_10_HZ_Wrapper has completed.

• The PERFORM_OWS_20_HZ_Wrapper should be executed whenever an INS, AFCS and ADCP event
has occurred and the PERFORM_OWS_10_HZ_NZ_WARN Wrapper has completed.

PERFORM_OWS_20_HZ_Wrapper executes each time PERFORM_OWS_10_HZ_NZ_WARN Wrapper
completes and both of the 10 HZ tasks execute at a higher rate than in the Ada design. No attempt was
made to reduce the rate of execution of any task in order to conserve computational resources. This
design is considered adequate for the purpose of the demonstration. However, for an operational
capability, a more detailed systems engineering effort would be required to consider:
• Computational load associated with each task
• Computational resource allocation to OWS processing
• True requirements regarding minimum rate of execution of each task and maximum latency between

requisite inputs and associated OWS task completion.

Ultimately a design that reduces the rate of execution of each of the OWS tasks, might be preferred. This
could be accommodated through introduction of events, which occur based on periodicity or by logic which
executes the OWS 10 HZ threads on a subset of the INS events. Analysis of and response to these types
of issues were considered beyond the scope of the IULS Program. They are common to all event-oriented
scheduling schema including new starts as well as attempts to utilize legacy software.

4.3.3 Process And Data Synchronization
For the OWS wrapper demonstration, there were no Interrupts or Clock Service issues to deal with. Data
synchronization issues were easily addresed under the COFP Event Structure. As related in the previous
section, availability of coherent sets of INS, AFCS and ADCP data was used to trigger the appropriate
OWS threads. Task 1 analysis of the F-15 re-host problem indicated that considerable excess throughput
was available on the COTS process chosen. Given this resource excess, there was no problem
completing OWS processing before the next data input sequence. This excess capacity was confirmed
through system testing executed prior to the flight demonstration.

23

4.3.4 Shared Data Access
Shared data access was by far the most important issue in developing the OWS Demonstration. Shared
data access issues fell into four categories:
• Access to data available from COFP elements
• Access required from functions not yet available in the COFP
• Output of data from the OWS threads back to the COFP
• Type conversions

4.3.4.1 Access To data Available From COFP Elements
The first activity executed in designing the OWS Wrapper was the mapping of each element in the OWS
Input PIMs back to an “Accessor” Function on the COFP. This is the most complex and laborious task in
wrapper design. All of the OWS inputs and outputs must be accounted-for and analyzed by an OWS
domain expert. For the case study, an Ada program analyzer/parser was used to list all of the parameters
in the OWS input and output PIMs and in the processing. The tool also provides a list of dependencies –
supporting components in the Legacy OFP that were imported. Each parameter was characterized in
terms of function, format and timing. Parameters that interfaced with the Host were mapped to equivalent
Host parameters and/or marked for unique wrapper component design (transforms, stubs, etc.).

The methodology used to match C++ accessors back to Ada variables was to use utilities such as the Unix
“grep” command to search the COFP Library for matches with Ada variable names or partial names. In
general multiple matches were found and required further analysis to identify which, if any, of the matches
were appropriate. Lessons were learned resulting from this activity. Programming standards used in
developing a new version of software should force a level of consistency in naming standards between
legacy and new versions. This would enable more efficient “key word” searches in order to match required
data to sources. Given an enforced level of naming consistency, a generalized tool could be developed to
automate much of the data matching activity. Unfortunately, naming consistency from the Ada OFP to the
COFP was not required, making the generation of the data map far more laborious. Furthermore, the map
was generated by personnel who were unfamiliar with OWS function, making the process more laborious.
Domain experts were in short supply and were available only to review and finalize the product. Despite
these challenges, the wrapper was developed on a schedule, which preceded the availability of the test
aircraft.

A mapping from the F-15 COFP to the F-15 OWS PIMs was developed to document the results of these
searches. An excerpt of the final version is presented in the following table, and the full table is in
Appendix A. This mapping served as the primary requirement for developing the OWS Wrapper. Using
WrapidH, we were able to directly implement these requirements graphically and the requisite code was
automatically generated. Although some effort was spent developing and debugging the WrapidH
capability, the recurring effort involved in converting a similar table into functioning Ada and C++ code will
be minimal. The left-hand column of the table contains the OWS Ada PIM name. The middle column
contains the Ada variable name and Ada type. The right hand column contains the COFP file name and
line number, the access methodology and the return arguments and types.

24

F-15 OWS PIM F-15 COFP
D_ADC_20HZ_INPUT_PIM MACH_NUMBER : Mach;

type Mach is new Real range -
20.0 .. 20.0;

A5ADP.h(57): const BQualityDouble& GetMach();
Ex. TheA5ADP_Ptr->GetMach()
Returns reference to BqualityDouble – GetValue() returns
mach/double/dimensionless, IsValid() returns bool.

D_ADC_20HZ_INPUT_PIM LOCAL_ANGLE_OF_ATTACK
: Cockpit_Units;
type Cockpit_Units is new Real;

A5ADP.h(56): const BAnglePiOver2&
GetLocalAngleOfAttack();
Ex. TheA5ADP_Ptr_-> GetLocalAngleOfAttack().GetAngle()
Returns reference to BAnglePiOver2 –
BaglePiOver2 derived from class Bangles – GetAngle() returns
Local Angle Of Attack/double/radians limited to –Pi/2 to Pi/2.

D_ADC_20HZ_INPUT_PIM LOCAL_ANGLE_OF_ATTACK
_
VALID : Boolean;

A5ADP.h(56): const BAnglePiOver2&
GetLocalAngleOfAttack();
Ex. TheA5ADP_Ptr_-> GetLocalAngleOfAttack().IsValid()
Returns reference to BAnglePiOver2 –
BaglePiOver2 derived from class Bangles -- IsValid() returns
bool

Table 6. OWS/COFP Mapping

The top-level data processing design is illustrated in the following figure, with the black or dark lines
showing the data flow between host, wrapper, and legacy OWS. As OWS processes are being run they
require data which has been produced in the Host and is generally pulled by the wrapper. This data must
be converted to a form required by OWS input PIMs. The data that is computed by OWS is in its output
PIMs and if needed by the Host, is pulled and converted/equivalenced by the wrapper, then pulled by the
Host when it is needed for display at the end of the processing frame.

OWS Transfer To Ada

Copy ... Inputs

Perform ... OWS

Copy ... Outputs

Process Interface Msg

Data

Stub/Transform Data

Host F-15
OO C++ Ada95

Rehosted F-15
OWS Ada83

OWS Output PIMs

Data

Operator (Displays)

Perform ...

Data ...

Event Channel

Events (20 Hz, 10 Hz)

Process Interface Msg

Data

OWS Events

Consume Events ...

OWS Input PIMs

Data

OWS 20 Hz

Perform OWS

A5 Avionics Interfaces

Get Data ...

Data ...

OWS 10 Hz & 10 Hz W

Perform OWS

Process Interface Msg

Data

Process Interface Msg

Data

Stub/Transform Data

C++

1

2

3

4 5

7

8

9

Auto-coded C++

Auto-coded Ada95

6

20 Hz & 10 Hz Process

Get Data ...

Perform ... Wrappers

Initialize Wrapper

Wrapper

Figure 17. OWS Wrapper Architecture

4.3.4.2 Access Required From Functions Not Yet Available In COFP
The effort to map the OWS Ada PIM variables to COFP accessor functions yielded numerous variables for
which no accessor exists. In most cases this was due to the nature of the COFP, i.e. it is a partial
implementation of the F-15 requirements. For these cases, stub values were specified for use in the
demonstration. most stubs were implemented as fixed values. However, some “stubs” deal with
peculiarities of the OWS Flight Test configuration. During the test, it was necessary to trigger numerous
overload situations. Obviously, flight safety concerns dictate that the aircraft not be stressed in this way.
The solution was to “lie” to the software. The aircraft flown was a clean configuration, i.e., no external
stores, no fuel in the conformal tanks (CFTs) and fuel weight decreasing as the flight progresses (takeoff
was with full fuel). However, the software was told that external stores were present, the CFTs were fully

25

fueled and the aircraft internal fuel weight was constant. Since it was desired to test several points in the
flight envelope, the PACS Training Mode capability was used to set various “simulated” stores
configurations during the flight. In this mode the crew can alter the stores configuration of each wing
station and the software will add in the eight of the “simulated” bomb and rack load. It was also desired to
vary the fuel load as part of the test point matrix. In response the wrapper was designed to extract the
fuel load based on pilot inputs through the cockpit display scratch-pad. In the remaining cases, system
design decisions made for the COFP resulted in an implementation for which there is no direct output
available to satisfy the OWS need. For these cases, logic was implemented to convert COFP parameters
into the information required by the OWS code. An example of this is the logic implemented to determine if
an IPE Engine is installed. The logic implemented checks to see if the right engine is type PW229 and the
left engine is type PW229. If both are PW229, “IPE Engine Installed” is set true, otherwise it is false.
Another example is the use of INS acceleration in place of CAU Normal Acceleration (CAU inputs were not
available in the demo configuration. The following table, in format similar to the previous, presents a
sample of the results of this ”stubbing” process including the pilot stores and fuel weight entry capabilities.
The full table is in Appendix B.

F-15 OWS PIM F-15 COFP
D_GEN_10HZ_UNPACK_PI
M

BRU_STATION_WEIGHT :
D_Ows_Types.Sta_2_8_5_Array_Type;
type Sta_2_8_5_Array_Type is array
(Sta_2_8_5_L_R_Type range Sta_2 .. Sta_5) of
U_Basic_Data_Types.Pounds;
type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);
type Pounds is new Real;

Not available in demo configuration –
Use PACS training Capability
If (A5UPACS_Station.stations[STA_X]
.merPresent) Stub to
BRU_STATION_WEIGHT(STA-X) = 0
lbs, else
BRU_STATION_WEIGHT(STA-X) =
524.0 lbs for X=2,5,8

D_GEN_10HZ_UNPACK_PI
M

CFT_STATUS_FLAG : Cft_Type;
type Cft_Type is (None, Cft_4, Cft_3);

Not available in demo configuration –
Stub to CFT_STATUS_FLAG = CFT_4.

D_GEN_10HZ_UNPACK_PI
M

AG_WEAPON_COUNT :
D_Ows_Types.Ag_Weapon_Count_Array_Type;
type Ag_Weapon_Count_Array_Type is
array (Sta_2_8_5_L_R_Type) of
U_Number_Types.Integer_Short;
type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);
type Integer_Short is range -32768 .. 32767;

Not available in demo configuration –
Use PACS training Capability
Stub to
AG_WEAPON_COUNT(STA_X) =
A5UPACS_Stations.stations[STA_X]
.wpnCount for X=2,5,8

D_GEN_10HZ_UNPACK_PI
M

LAUNCHER_WEIGHT :
D_Ows_Types.Sta_2_8_Array_Type;
type Sta_2_8_Array_Type is array
(Sta_2_8_5_L_R_Type range Sta_2 .. Sta_8) of
U_Basic_Data_Types.Pounds;
type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);
type Pounds is new Real;

Not available in demo configuration –
Stub to LAUNCHER_WEIGHT(STA_2)
= LAUNCHER_WEIGHT(STA_8) = 0
lbs. Note
LAUNCHER_WEIGHT(STA_5) is not
defined.

D_GEN_10HZ_UNPACK_PI
M

PYLON_WEIGHT :
D_Ows_Types.Sta_2_8_5_Array_Type;
Type Sta_2_8_5_Array_Type is array
(Sta_2_8_5_L_R_Type range Sta_2 .. Sta_5) of
U_Basic_Data_Types.Pounds;
Type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);
Type Pounds is new Real;

Not available in demo configuration –
Use PACS training Capability
If (theA5UPACS_ptr-
>GetPylonPresentSta2()) Stub to
PYLON_WEIGHT(STA_2) = 500.0;
Else PYLON_WEIGHT(STA_2) =0.0;
if (theA5UPACS_ptr-
>GetPylonPresentSta5()) Stub to
PYLON_WEIGHT(STA_5) = 300.0;
Else PYLON_WEIGHT(STA_5) =0.0;
if (theA5UPACS_ptr-
>GetPylonPresentSta8()) Stub to
PYLON_WEIGHT(STA_8) = 500.0;
Else PYLON_WEIGHT(STA_8) =0.0;

Table 7. OWS/COFP Stubs

4.3.4.3 Output Of Data From OWS Threads Back To COFP
The OWS functions provide overload-warning indications to the crew. Outputs from the OWS threads
back to elements of the COFP drive these displays. For the demonstration effort was required to convert
the Ada output back to the C++ format, to implement the requisite OWS displays and voice warnings. The

26

displays were implemented using the VAPS tools. The remaining output capabilities were developed using
WrapidH.

4.3.4.4 Type Conversions
Type conversion from C++ to Ada was required for the parameters passed to the Ada threads and from
Ada to C++ for the display and voice warning parameters. The bulk of the required conversions were
implemented using the WrapidH tool to access previously developed type conversions. This process was
straight forward and required little if any re-coding. Two problems arose. The first and most significant
problem was the conversion of arrays. There is no capability to pass an array by value to or from C++.
C++ treats arrays through pointers. Extracting or supplying pointers is not compatible with Ada principals.
 The only solution to this problem was to develop routines, which passed arrays back and forth on an
element by element basis. The second problem was an Ada exception, which was experienced in the
laboratory test environment. The problem occurred when an Angle-of-Attack value, which was below the
Ada type specification lower limit, was passed from the C++ to the Ada. Systems Engineering analysts
decided that the value could not be experienced in a closed loop flight environment and the problem was
dispositioned as unrealistic. Systems engineering considered incorporation of logic on the C++ side to limit
the value passed to the Ada side, but decided it would offer no benefit in terms of system robustness and
safety.

4.3.5 External Data Access
The only external data access involved in the modifications required for the demonstration was the display
and voice warning output. Normally, in a complete upgraded hardware suite, the OWS warnings would be
provided by a set of tones, and the wrapper would have been constructed to provide the requisite data
automatically. However, because the existing hardware did not support this function, an alternative method
using the "low altitude - pull up" voice warning caution was used. The voice warning output was hand-coded
in C++ and integrated into the wrapper using WrapidH. The voice warning was needed to provide a good
distinct immediate feedback to the crew that the OWS logic was working satisfactorily. The display drivers
were developed using the VAPS GUI Tool-set and hand integrated into the OFP.

4.4 Development Environment
The ideal development environment for the OWS Demonstration would accommodate both C++ and Ada
for both Desktop (PC) and target (PowerPC). Unfortunately, at the time of initiation of the OWS
Demonstration effort, no such integrated environment existed. Green Hill Ada MULTI provided the requisite
capabilities for the PowerPC target but not the Desktop PC. For the Desktop, Green Hills MULTI was
capable of developing the Ada object code only, i.e. it had no Desktop C++ capability. The development
environment in use for the COFP was Microsoft Visual C++ Developers Studio. It offered capabilities to
develop and debug Desktop PC C++ applications and to integrate C++ and Ada object code into a desktop
executable. The Microsoft tool had the added advantage that it was widely available in the Boeing Bold
Stroke organization and numerous developers were familiar with it. It did not offer an integrated de-
bugging environment for the integrated object code. The decision boiled down to using the Microsoft
environment for the Desktop effort or using the Green Hills environment and going directly to the target
machine. There were numerous risks associated with this second approach:
• The Green Hills product was less proven than the Microsoft product
• Few developers were familiar with the Green Hills product
• Target machine availability would be a serious bottleneck
• Plans called for using the Desktop Test Environment (DTE) for initial debugging of the integrated

product – DTE integrated with the development environment was not available for the target
processor.

Of necessity, the decision was made to use the Microsoft tools for completion of the Desktop effort and
transition to the Green Hills tools for the target machine. Although no other viable path existed, the lack of
an integrated de-bugging environment proved to be extremely time-consuming. Since the bulk of the OWS
problem is the importing of the C++ data into the Ada threads, debugging is almost completely done on the
Ada side. Because there was no integrated environment, debugging on the Ada side required
incorporation of diagnostic code, recompilation and extensive data analysis. Needless to say, this was a
time consuming process, but was unavoidable. In future efforts every effort should be made to ensure that
an integrated environment is available for each phase of the development.

27

4.5 Wrapper Implementation
The OWS Wrapper was developed using the IULS Wrapper Toolset (WrapidH) which was created for the
IULS Program using the Honeywell Domain Modeling Environment (DoME), as depicted in the following
figure.

. . .

Get Get Put PutSemaphore

Legacy Signature

Frame
Sync

Tactical
State

Aircraft
State

Guidance
Mode PVI

Legacy Controller

Wrapper Architecture

Domain Modeling Environment
(Honeywell’s DoME)

Design
Database

Graphical
Design
Editor

Auto-code
Generator

Document
Generator

Test
Generator

Architecture
& Design
Analyzer

Wrapper Toolset
(WrapidH)

...1100110001110101010101
010101010010111010010011
010001010100100110101010
111110001001010010101110
100010100101010110101010
0101010101001010101010...

Legacy Software

Upgraded Software
With Wrapped Legacy

Sync

In

O
ut

...1100110001110101010101010101
01001011101001001101000101010
01001101010101111100010010100
10101110100010100101010110101
01001010101010010101010101...

Put Get
ISA

1750 Transforms

Wrapper Control

OO Get/Put

Emulator

Wrapper Library

Proposed New
System

Shelf Components

Figure 18. WrapidH Toolset

The software architecture implemented for the demonstration is shown in the following figure. The key
element of this architecture is the IULS Wrapper, which was developed using WrapidH. The IULS
Wrapper contains 407 Source Lines of Code (SLOC) of automatically generated C++ code and 482 SLOC
of automatically generated Ada95 code. The Rehosted OWS software, which was wrapped, contains
7200 SLOC of Ada83.

New Host

F-15 OFP

OO C++ Ada95

Rehosted

 F-15 OWS

 Ada83

INS G’s

C++

Auto-coded C++ & Ada95

Stores Load

Fuel Load
Avionics

Inputs

Get

Data

Transform

Data

Transfer

Data

Transform

Data

OWS

Processing:

10 Hz

10 Hz Warn

20 Hz

IULS Wrapper

Get Display

Data

Data Transfer

Data

F-15E

 Avionics

Head-Down

OWS

 Display

HUD

G’s

 Display

OWS

Inputs

OWS

Outputs

Figure 19. Upgraded Software Architecture

4.5.1 Build/Modify Wrapper Model
The data and processing components were incorporated into a wrapper software model, “OWS_Wrapper”
using WrapidH. The following figures show a portion of the wrapper model at various levels. The intent in
showing these particular figures is to illustrate a sample string of data and control flow through the model.
The following figure shows the top level of the model – a depiction of the modeled software components in

28

the WrapidH/DOME user interface on a PC/NT Workstation.

Figure 20. Top Level Wrapper Model

The name of the model is BIG-OWS-WRAPPER.DOM as is indicated in the window label. The wrapper
has an initialization process at the top and three processes to perform on a regular basis that enclose the
legacy processes. The other processes depicted in this figure are run on an as-needed basis including
data access methods used by the Host to “get” the OWS outputs for display and validity flags.

The two processes that will be described in more detail are “PERFORM_OWS_20HZ_Wrapper” and
“GetMOST_RECENT_DISPLAY_NZ”. These processes are scheduled by the Host infrastructure at 20 Hz.
 The “PERFORM_OWS_20HZ_Wrapper” process converts data from the Host environment to the Legacy
OWS/Ada environment and then calls processes to be executed in the Ada environment. The second
process “GetMOST_RECENT_DISPLAY_NZ” primarily gets the data that has been generated in the Ada
environment and converts it for the Host environment so that it can be used to display normal acceleration
(“G’s”) on the HUD.

The wrapper designer uses the DOME/WrapidH tool to navigate through the model by point-and-click on
the desired components. Components with a block in the top-right corner have a lower-level model.

29

The next level of the model for the process “PERFORM_OWS_20HZ_Wrapper” is shown in the following
figure.

Figure 21. Perform OWS 20HZ Wrapper (Part 1)

The aircraft state data that is required by the OWS input Ada PIMs has been identified, and their
equivalent “C PIM” structures are shown to the right, such as “ADC_C_PIM”. Each required parameter
(such as Mach Number) is shown as an input. The equivalent Host parameters (and their access methods)
have been identified in a Host structure modeled/labeled A5ADP (Air Data Process) on the left. The data
is passed through intermediate components (in the center) that convert the data to a different type, convert
the units, or simply assign it (and its validity) to the intermediate storage locations in the *_C_PIMs.

30

The lower part of the “PERFORM_OWS_20HZ_Wrapper” model is depicted in the following figure. It
shows this process activating another process called “OWS_20HZ_Transfer_TO_ADA” in the
“OWS_20HZ_PIM_TRANSFER package after the required data has been loaded in the input *_C_PIMs.

Figure 21. Perform OWS 20HZ Wrapper (Part 1)

31

Figure 22. Perform OWS 20HZ Wrapper (Part 2)

The following figure shows part of the next level “OWS_20HZ_Transfer_TO_ADA” which basically converts
the data in the *_C_PIMs to the *_ADA_PIMs. Once all of the PIMs have been converted, the Legacy Ada
code to PERFORM_OWS_20HZ can be activated as shown in the ‘D_OWS_20_HZ” package near the
bottom.

32

Figure 23. OWS Transfer to Ada

Once the Legacy OWS has been executed the results are copied to the output *_C_PIMs by executing the
process “OWS_20_HZ_Copy_Outputs”, shown in the following figure at the lowest level of the model.

33

Figure 24. OWS 20 Hz Copy Outputs

Note in the following figure that the variable “MOST_RECENT_DISPLAY_NZ” is one of the data fields to
be converted. This is the variable needed by the top-level process “GetMOST_RECENT_DISPLAY_NZ” in
the following figure.

34

Figure 25. Display NZ

The properties for each model component such as the D_OWS_20_HZ_C_PIM package are
entered/shown in a property inspection window depicted in the following figure. In this case, the package
code does not exist (either imported or on the shelf), and will be generated in Ada and C++. The
package’s description, design rationale, links/cross-references, appearance, and other characteristics are
entered through the window.

35

Figure 26. Component Properties

4.5.2 Build/Modify Wrapper Components
Every component type shown in the model has associated source code. These components can be built
within the DOME/WrapidH tool by using the built-in graphical editing tools and property specifications, or
their source code can be imported via the “Tools” menu option. An Ada parser was used to extract
portions of the legacy VCC OFP containing OWS-relevant source code into a representation that could be
loaded onto DOME and processed by WrapidH.

The data and control transforms were coded by hand, or auto-coded by the WrapidH tool from their type
and graphical specifications. The stubs were hand-coded. Future editions of the WrapidH tool will be able
to model and auto-code more of these components. All software components that were developed for the
case study were added to the Wrapper Library and are available to future users of the toolset via the
Shelf.

4.5.3 Generate Wrapper Code
The following figure contains the C++ source code generated by WrapidH for the “OWS_20Hz_C_PIM”.

File Edit View
■ -inl.l

Nome:| D_OWS_20_HZ_C_PIM

Name | Description | Rationale | TraceablHty | Color | X-Rets | Overlays Properties

Implicit:!

Exists:!

0 True & False

0 True C False

Language:! TBD 3
Generate-in-ada:!

Generate-in-c:!

ff True <* False

S True C False

Source Path!

1

36

/**
 File generated by WrapidH, version 1.3
***/

#ifndef D_OWS_20_HZ_C_PIM_h
#define D_OWS_20_HZ_C_PIM_h 1
#include "INTERFACES.C.h"
#include "D_OWS_TYPES.h"

typedef struct {
 double MAX_POSITIVE_MAGNITUDE_G;
 double MAX_NEGATIVE_MAGNITUDE_G;
 double MOST_RECENT_DISPLAY_NZ;
 double MOST_RECENT_DISPLAY_RATIO;
 RECALL_DATA_COMPONENT_TYPE MOST_RECENT_DISPLAY_INDEX;

 } D_OWS_20_HZ_C_PIM_TYPE;

extern "C" {

 extern D_OWS_20_HZ_C_PIM_TYPE OWS_20_HZ_C_PIM;
};
#endif

Figure 27. Component Code

The following figure depicts the WrapidH code generating process for the updated OFP that combines
legacy, wrapper and new Host components. The key ingredient in the process is the Wrapper Design
model that is an output of the Wrapper Design Step. For the OWS study several iterations of this process
were necessary since this was one of the first uses of WrapidH on a large software system. Tool features
and refinements were added during each wrapper design iteration.

Code
Generator

Wrapper
Design

Design
Tool

Legacy & Wrapper
Components

Host
Architecture

Figure 28. Generate Wrapper Code

37

A sample of the C++ code listing (file OWS_Wrapper.cpp) that is called from the Host interface is shown in
Appendix C. This code contains the functions “GetMOST_RECENT_DISPLAY_ NZ” and
“PERFORM_OWS_20HZ_Wrapper”. Also note that the function “OWS_20HZ_PIM_TRANSFER_
OWS_20HZ_Transfer_To_Ada” is called from within the function “PERFORM_OWS_20HZ_Wrapper”.

The Ada95 code listing generated by WrapidH, OWS_20Hz_PIM_TRANSFER.ada, is contained in
Appendix D. It includes the procedures OWS_20HZ_Transfer_To_Ada, the PRAGMA to export Ada to C,
and the procedure OWS_20_HZ_Copy_Outputs.

4.5.4 Link With OFP
The legacy OWS code and new Wrapper code were compiled and linked with the Host OFP code in the
Boeing F-15 Desktop Test Environment (DTE) on a PC/NT Workstation for wrapper evaluation and initial
software integration and testing. Microsoft Visual C++ and Green Hills Ada MULTI for Pentium/Windows
were employed. An ensemble of test cases was extracted from the original set of OWS verification
procedures. Test cases were chosen to exercise all elements of the OWS Wrapper and covered all
demonstration test points. A significant advantage of reclaiming legacy code is that code integrity is
maintained. It is not necessary to verify every test condition considered in the original verification plan
because the legacy code performs identically with the original implementation. This was borne out during
the OWS Wrapper verification process. As expected many problems were encountered. In all cases they
were traced to elements of the wrapper – generally things missing in COFP. No problems were
encountered in the areas controlled by the legacy code.

4.5.5 Evaluate Wrapped System
The goal/purpose of this phase of IULS was to produce wrapper components and a functional OFP that
compiled and ran on the F-15 DTE to evaluate the quality, structure and performance of the WrapidH-
generated software. The WrapidH tool was enhanced and refined based on the results of the initial
passes through the Wrapper Build, Code Generation and Link with the OFP.

When the system was ready for system test and evaluation it was recompiled and linked using Green Hills
Ada MULTI for PowerPC/VxWorks and downloaded to the ADCP’s General Purpose Processor (GPP)
Module in an F-15 Software Test Facility (STF) environment.

The relative sizes of the components (in source lines of code) for the final demonstration and flight test
OFP were:

Component Software Lines of Codes
(Not Comment/Blank)

Total Source Lines

Total OFP (C++ and Ada) 119363 534054
OWS Application (Ada Including PIMs) 7195 23738
Ada Wrapper 482 880
C++ Wrapper 408 811

Table 8. Software Component Size

The average execution times on the ADCP GPP processor card for a 20 Hz frame (50 milliseconds
available) that includes all 20 Hz and 10 Hz processing are shown in the following table. It is noteworthy
that the 20 Hz wrapper uses 7.2 msec / sec and the 10 Hz wrapper uses 1.6 msec/sec. This represents a
total of 8.8 msec/sec for wrapper execution which is less that 1 percent of the available throughput.

Component 20 Hz
Tasks (ms)

10 Hz
Tasks (ms)

All Tasks /
Frame (ms)

Complete OFP (C++ and Ada) 22.49 6.06 34.25
OWS Application (Ada Including PIMs) 0.58 0.78 1.36
Wrapper Application (C++ and Ada) 0.36 0.16 0.52

Table 9. Software Throughput Usage

38

4.6 Test Wrapped System
Three levels of testing were performed to support the laboratory demonstrations and for flight
qualification:
1. Software testing of the OFP was performed in the DTE Workstation and on the ADCP target in the F-

15 Project’s Software Test Facility with functional test scripts. An important aspect of this testing was
to verify the integrity of the processing using software instrumentation such as Wind River Tornado.
These tools allow the designer/tester to visualize the detailed execution of each task and processing
frame under normal operation, initialization, and mode transitions (including degradation).

2. The ADCP OFP was functionally tested on an integrated F-15 avionics system “hot bench”, in an F-15
Flight Simulator by the F-15 Project Pilot and system test personnel, and in an F-15E test aircraft on
the ground using standard F-15 Production Test Procedures.

3. Following an F-15 Flight Certification Board review, a flight test of the upgraded OWS functionality
(and the “retention” of baseline Host functionality) took place on 1 December 1999 in F-15E1. The
demonstration flight plan called for execution of six, test points. These corresponded to combinations
of three different weapon loads with two different fuel configurations. The test points were selected to
exercise the 85%, 92% and 100% OWS triggers. The Pilot, Weapon Systems Officer and Flight Test
Engineer reported successful test results. In order to test the OWS in-flight without actually stressing
the airframe under excessive G’s, the weapon and fuel load inputs to the OWS processing were
manually set by the aircrew through the Up Front Control Keyboard to establish the test points for a
fully loaded flight scenario. Using these sets of calibrated weight input, the OWS computed and
reported all warnings and overload factors accurately on the cockpit displays as the aircraft
maneuvered.

4.7 F-15 Demonstration Summary
The F-15 demonstration thoroughly validated the IULS rehost process and toolset. Operationally the
demonstration received enthusiastic endorsement from the flight crew who referred to it as a “Home Run”
in the post flight debrief. The in-flight performance was 100% in agreement with the a priori estimates
matching all six test points, exactly. The WrapidH tool proved to be extremely valuable in developing the
wrapper design and the automated code generator worked as expected in both the Ada and C++ domains.
 As predicted considerable domain expertise was required to develop the wrapper. However, the bulk of
this work was performed by IULS engineers who initially had no familiarity with the heritage code. These
engineers were able to readily understand the legacy Ada and COFP C++ to the extent required to support
wrapper design and system de-bug. Wrapper testing confirmed the prediction that wrapped code integrity
would be intact – no problems were detected in which wrapped code operation was an issue.
Measurement of wrapped system performance confirmed that the automatically generated code was
efficient, requiring less than 1 percent of the available system throughput. This also confirmed the Task 1
system modeling which had predicted system throughput was more than adequate for the demonstration
requirements.

Probably the only negative of the demonstration resulted from changes in the F-15 customer’s program
plan, which occurred late in the demonstration effort. The OWS demonstration was designed to aid in the
transition from an Ada OFP to a C++ OFP. This was in accordance with the customer roadmap at the
time the demonstration was definitized. The customer had planned to transition the wrapped OWS
software as tested which would have decreased the source lines of code to be developed by
approximately 7000. In addition, the customer was poised to use the wrapper tool in lieu of re-engineering
several other OFP functions to OO C++ pending success of the IULS demonstration. These included the
GCWS (ground collision warning system) and ZAP (launch zones) and totaled over 25,000 lines of
additional code that would have been wrapped vice re-engineered.

Because of funding priorities, the F-15 SPO subsequently decided to continue with the Ada OFP as the
baseline rather than transitioning to the C++ baseline. Because of this decision the wrapped OWS
software will not transition to an operational capability. However, it will continue to support technology
demonstrations and is the baseline for the Weapon System Open Architecture (WSOA) demonstration,
which is in development.

The IULS F-15 technology demonstration was an unmitigated success and received a letter of
endorsement from the F-15 program along with press coverage in Aviation Week magazine (Aerobytes, 21
Feb 2000) and other trade journals. It demonstrated the utility of the automatic wrapper generation

39

process. Whilst the seminal F-15 example selected for our demo emphasized wrapping legacy Ada
components into a C++ OFP, IULS technology is also directly applicable to the reverse case - wrapping
C++ components into an Ada OFP. This specific technique may be directly applicable in the WSOA
demonstration as we work to transition C++ image processing and display software to the Ada Suite 5
OFP.

40

5 C-17 IULS Demonstration
The requirement for IULS Task 2 was a realistic demonstration of the application of the IULS tools and
processes to a realistic legacy avionics domain – the goal was to execute two demonstrations. An F-15
demonstration was the first priority and the initial focus of Task 2. The OWS Demonstration, described
above, was chosen and the demonstration plan was definitized. Because the flight demonstration assets
were made available without charge to the IULS program, sufficient funding remained to execute a second
demonstration. Since the F-15 OWS demonstration confirmed the Rehost approach, and to a limited
extent the Hybrid approach, the goal was to find an application in which emulation was appropriate. The
C-17 program, which had outgrown the capabilities of its baseline 1750A Avionics Architecture was
identified as the best candidate for transitioning IULS emulation techniques.

5.1 Emulator Framework
An upgrade technique that uses an ISA emulator employs a subset of the wrapper components. The
emulation architecture is illustrated in the following figure. The ISA emulator (here shown as a software
task) implements the legacy ISA state machine. The emulator program interfaces with the system
thorough the wrapper services. The Target Memory Space is a binary load image of the legacy OFP. The
basic features and elements of an emulator wrapper are the following:

• Wrapper control - the wrapper process executes as a task of the host Executive or RTOS
• Emulator initialization - loads and initiates the OFP image.
• Process and data synchronization

• Interrupts and Synchronization
• Clock services
• Legacy “system” reset

• Shared data access
• “Peek” into legacy memory space
• “Poke” or change legacy memory space.

• External data access
• Input handler
• Output handler
• Data reformatting

• Legacy machine state vector
• Virtual switches and discrete signals.
• Restart cycling
• Checkpoint and test instrumentation

OFP
Code
Space

Emulator
Program

Wrapper Layers

Figure 29. Emulator Architecture

5.1.1 Emulator Trade Study
Emulation became a useful technology in the late 1960’s. Thus, the market is mature and product offerings
are reasonably well understood. The following trade study was performed in the IULS Task 1 period. The
study represents a wide cross section of the available commercially available products. Products were

41

selected for the availability of a 1750A ISA product or a product easily modifiable to the 1750A ISA. The
vendors and products considered in the trade study were:

Vendor Product
CCT - Anaheim, CA Firmware processor emulator of the AP-101 A-6 mission processor
Visicom - San Diego, CA Emulators of UYK-20, UYK-7, UYK-43 processors. Tightly coded

machine language emulator on a commercial processor, bridge for
NTDS I/O card set

CPU Technology -
San Diego, CA

Hardware emulator of 1750 ISA. Product incorporates MIPS R3000
core as additional ISA choice. Chip emphasis on throughput.

Northrop-Grumman - Pico
Rivera, CA

Software emulator of B-2 1750 variant (approx. 1 MIP). Demonstrated
on COTS processor board, COTS I/O card set

TRW - Dayton, OH Software emulator of 1750 ISA. COTS processor host (PowerPC),
technically similar to Northrop-Grumman

Table 10. Emulator Candidates

The trade issues that were considered in the study emphasized the flexibility and migration capability of the
product. These evaluation factors are subjective parameters. The selection of best and marginal
examples for each factor was based on information provided by the vendors. In some cases there was
little current information provided by the vendor. In these cases GDIS relied on recent experience with the
product.

The evaluation criteria selected for the trade study were as followed:

1. Cost to correct latent errors.
2. Intersection with mainstream

• Reacting to change in the mainstream.
3. Migration path options

• Can the product be used as a Rehost platform?
4. Cost to change host platform

• Any custom design required?
5. Emulation fidelity index

• Ability to avoid OFP modification.

Item 1 refers to the cost to correct any error in the legacy state machine (ISA emulator). A software or
firmware emulator implementation is less costly to modify than a hardware implementation. Items 2 and 3
recognize that the legacy OFP may be eventually be migrated to a COTS processor (similar to the Rehost
option) at some point in the future. An emulation option that is hosted on a mainstream COTS processor in
a “popular” language is preferred over a design that includes a high level of optimization. In addition, a
portable emulation implementation (in a language such as C++) is superior to other choices. Item 4 favors
the use of off the shelf microprocessors as opposed to custom devices. That is, the COTS processor will
change over time (typically in 18 to 24 month cycles) and if any custom design is required (gate array,
FGA, etc.) to implement the emulation engine then that design is less desirable. Item 5 recognizes that
some technology may be superior in addressing the “last” nanosecond of fidelity. This factor is important,
but it is also a trade issue. The trade-off factor is the cost of potentially modifying a small portion of the
legacy OFP relative to all other factors.

A summary of the trade study results are presented below:

42

Criteria Preferred Product Product Barriers
1. Cost to modify
product

Software emulator: TRW, Northrop-
Grumman, Visicom

Firmware emulator: CCT
Hardware emulator: CPU Tech

2. Intersection
with mainstream

C software on COTS: TRW, Northrop-
Grumman

Custom implementation: CCT, CPU
Tech

3. Migration path COTS board set: TRW, Northrop-
Grumman, Visicom

No commercial path: CCT, CPU Tech

4. Cost to change
host

No known custom designs: TRW,
Northrop-Grumman

Custom device: CPU Tech

5. Emulation
fidelity

Hardware implementation: CPU tech,
CCT

Software on COTS: TRW, Northrop-
Grumman, Visicom

Table 11. Emulator Trade Study

5.1.2 Emulator Strawman Architecture
A strawman architecture for an emulator based upgrade system is shown below. This hardware
configuration reflects the COTS class of embedded processing systems at completion of IULS Task 1.
The primary elements are a single board computer module (or modules), one or more primarily I/O
modules (possibly incorporating a processor and kernel OS), and a backplane bus (VME64 in this
example). The architecture allows for the distribution of wrapper services across the various modules.
The backplane bus and distributed architecture are critical factors in the process of designing a real-time,
embedded emulation engine implemented upgrade for an application such as the C-17 APM or CCU.
These items were addressed in the modeling and simulation phase on Task 1.

VMEbus

CPU I/O
Module(s)

OS Kernel

Events

Sync/Clock/I-O/
Controls/Reset I/O Data Flow

Drivers/Reformat

I/O Data Flow

Drivers/Reformat

Backplane Bus Interface Kernel

Initialize

Boot/Debug/Main

Emulator
Program

Target
Memory
Space

Figure 30. Emulator Strawman Architecture

5.1.3 Emulation Environment
Wrapper services for an emulation environment are primarily concerned with interfacing a software task
(the ISA emulator program) with a hardware configuration and the RTOS being used (e.g., VxWorks on a
PowerPC COTS board). Additional services are provided within the wrapper environment to accomplish
the following:

1. Provide an interface to the operator/integrator. The wrapper services provide a “monitor” type

interface and debugging support. The integration of the legacy OFP with the emulator requires a
capability to execute the legacy OFP in a controlled environment.

2. Provide instrumentation capability. Validation of the emulator environment will require the ability to
collect operational data in a bench test mode.

43

3. Incorporate an escape mechanism. The emulator and the wrapper services should include a method
for escape to the native mode of the emulation engine (e.g. PowerPC, VxWorks, etc.). The
requirement is to be able to escape and return in a controlled way.

5.1.4 Emulation Tool Selection
Early in Task 2 (March – 1998) a briefing was given to the IULS Customer and the C-17 SPO. At the time
of the briefing IULS funding had been identified to support a C-17 emulation demonstration. An APM
demonstration was recommended and the combined customers were asked to review and comment on the
recommended approach. At this time a tentative decision to acquire the TRW 1750A emulator technology
for the APM upgrade, pending resolution of certain programmatic and technological issues, was briefed.
The selection of the TRW emulator confirmed the Task 1 Emulator Trade Study which indicated that the
TRW tool was a strong candidate for the IULS problem domain. Programmatic issues to be finalized
included:
• Transitionable technology
• Availability for open evaluation
• Visibility into technology
• Terms of license agreement.

Technological issues included:
• Interface openness
• Availability of emulated application to software access
• I/O emulation / access to devices
• Demonstration approach.

These issues were analyzed in parallel with the customer evaluation of the recommended APM
demonstration, described below. In all cases, the programmatic and technical issues were resolved in
favor of selecting the TRW tools. As described below, the customers subsequently decided on a CCU
emulation as being in the best interest of both IULS and the C-17. By the time of the redirection of the
demonstration effort had been promulgated into a program plan, the decision to use the TRW emulator
was made. An overview of TRW’s RePLACE Emulator is shown in the following figure.

COTS Microprocessor

Legacy Virtual Machine

Real Time Operating System

New
Native
Code

Object

New
Native
Code

Object I/O
 D

ri
ve

rs

Native Virtual
 Machine Virtual Component Environment

Legacy Instruction Set

Legacy Binary OFP
Code

Other SystemsOther Systems

New COTS I/O Interfaces

I/O
 M

ap
pi

ng
S

/W

Other ModulesOther Modules

RePLACE is Performance scaleable!

I/O mapping
software maps new
COTS interfaces to
legacy interfaces

Unique cache
optimized code

supports Dual Instruction
Set Computer (DISC)

environment

 Virtual Component
Environment allows

concurrent execution
of legacy and native

code

Figure 31. Overview of TRW’s RePLACE Emulator

44

5.2 C-17 Avionics
The C-17 produced by Boeing’s Military Transport Aircraft (MTA) division contained a federated avionics
system that had much in common with combat aircraft including its software domains. It contained two
1553 busses controlled by redundant mission processors - three Missions Computers, which at that time
were to be replaced by two Core Integrated Processors (CIPs). The other major system busses were the
Warning and Cautions bus and the four engine control busses. The pilot and co-pilot had HUDs and multi-
purpose displays whose formats were generally configured by the mission processors; there was no
dedicated display processor.

The table below lists the C-17 avionics subsystems that were subject to frequent updates and were
potential candidates for the demonstration.

Subsystem Major Functions Processor OFP
Language/Size

(Words)

Vendor
H/W / S/W

Aircraft/Propulsion Data
Management Computer

(APM)

Collects and processes data,
performs signal conditioning, and
packs/unpacks data for the Avionics,
Propulsion and Warning and Caution
Busses

1750A JOVIAL / AL
108K

Hamilton-
Standard /

MTA from HS

Central Aural Warning
Computer System (CAWS)

Generates tones and voice
messages for the aircrew and
loadmaster

MC6800 C MDA (Monrovia)
/ MDA-M

Communication Control

Unit (CCU)
Distributes audio communications
among the radios and crew stations

1750

Core Integrated Processor
(CIP)

Performs mission processing
including navigation, guidance, flight
planning, performance prediction,
aircrew display and control, system
management, communications
management, and database
management

R4400 Ada83 / C LM / MDA

Flight Control Computer
(FCC)

Four channel flight control processing
to drive the primary control surfaces
and engines.

1750 JOVIAL / AL LM / LM

Mission Computer /
Communications Keyboard

(MCK)

Provides alphanumeric data entry and
pushbuttons to control Mission
Communications Display (MCD)
pages and COMM/NAV controls

MC68000 AL Delco / Delco

Multi-function Display
(MFD)

Two color 6x6 cockpit displays for
mission and aircraft performance
information

1750 JOVIAL / AL Honeywell /
Honeywell

Warning and Caution
Computer (WAC)

Collects caution, warning and failure
information form airframe systems and
formats it for C&D

1750 JOVIAL Litton / Litton

Table 12. C-17 Subsystems

The APM, CAWS, and WAC were internal signal processing subsystems containing relatively non-volatile
software. However, their processing hardware was becoming obsolete, and software maintenance costs
by subcontractors were increasing due to relatively unique software, languages and software engineering
environments (SEEs). MTA was in the process of bringing their software in-house. There were also
proposals to bring their functionality into the CIP that had spare card slots. However, this architectural
change would require extensive rewiring of the aircraft, which was not practical, until it was forced by other
major functional upgrades. An APM emulation was the original recommendation for an IULS Task2 C-17
demonstration.

The MCK and MFD were typical control/display upgrade candidates. The display head technology (CRTs
and low resolution LCDs) was growing obsolete, the units had limited functionality and/or resources and
software maintenance was expensive. C&D architectural changes, which move to a centralized display
processor and “dumb” display heads, had been proposed.

The CCU was a candidate for replacement by a major upgrade of the C-17 CNI subsystems. As with the
F-15’s FCCs, the C-17’s FCC hardware had been upgraded, and its low volatility and safety critical

45

software presented complex upgrade retest problems. The CCU was eventually chosen as the target
domain for IULS Task 2 emulation.

The CIP was under development (first flight was scheduled for Summer 1997) to replace the extant
Mission Computers whose hardware was obsolete and overloaded. Software upgrades were going into
both systems in parallel.

A prime consideration in the selection of the avionics component to be used for the IULS demonstration
was potential for transition to an EMD program. Specifically, the IULS goal was not only to demonstrate
technology on a significant avionics upgrade challenge problem, but also to transition the technology to an
emerging EMD opportunity.

5.3 Customer Upgrade Requirement
5.3.1 C-17 APM
The APM was a prime candidate for the demonstration because it represented a domain of avionics
subsystems that does internal data collection and formatting, and bridging of multiplex busses. It was
essentially a state machine similar to the F-15’s AIU, but it did more processing for caution and warning
generation including the calculation for a stall warning. It supported interactive maintenance mode formats
on cockpit displays via the CIP, and supplied data to the C-17’s recorders.

Flight
Control

Computer
1-4

Mission
Computer/

Communicat ion
Keyboard

1 & 2

Aircraft/
Propulsion

Data
Management

Computer
1 & 2

Warning
And

Caution
Computer

1&2

Avionics Bus

Multiplex Bus

Discretes/Analogs

Centra l
Integrated
Processor

1&2
(Or Mission

Computer 1-3)

Electronic
Engine
Control

1-4
WACS BusEngine Bus 1-4

Flight
Data

Recorder

Airborne
Integrated

Data
System

• Electronic Flight Control System
• Cabin Pressure Control ler 1&2
• Environmental Control System
• Aircraft Surfaces

Figure 32. APM Context

Besides the Avionics and Warning And Caution System (WACS) 1553 MUXs, the APM had major serial
interfaces via ARINC 573 with the Aircraft Integrated Data System (AIDS - maintenance data recorder),
and via ARINC 429 with the Electronic Engine Controls (EECs), Flight Test Recorder (FTR), and Cabin
Pressure Sensors/Controllers (CPSs). ARINC 422 channels were used with Engineering/Flight
Development Units for aircraft testing. The APM received many analog sensor inputs for conversion such
as AOA, control surface positions and acceleration; some were used for generating the stall warning
discrete output to the pilot’s and co-pilot’s stick shakers.

The following figure represents the major hardware components of the APM. They were contained on one
“mother board” linked with local common address, memory and control busses.

46

General
Processor

• 1750A

1553B
• 8K RAM

Avionics Bus WACS Bus AIDS

 ARINC 573
Output

• 2 Channels

1553B
• 8K RAM

Memory
• 176K ROM
• 32K ROM
• 64K Dual

Port RAM
Memory

Mgmt Unit

 ARINC 429
Outputs

• 7 Channels

FTR/EECs/CPSs

Analog
Inputs

• 30 AC With
Excitation

• 6 DC

Discrete
Outputs

• 6 Outputs

Discrete
Inputs

• 27 Inputs

 ARINC 429
Inputs

• 8 Channels
• 16K RAM

 ARINC 422
I/O

Test

EECs

Address/
Memory/
Control

Figure 33. APM Hardware Configuration

It was a special purpose processor whose architecture was customized for this application. The JOVIAL
OFP including boot program were in the 176K static EEPROM. The 32K EEPROM was used to store
aircraft fault data that was retained at power-off between flights.

Early in Task 2 the IULS customer and the C-17 SPO were briefed on Task 2 plans for the C-17. The
result of the Task 1 analysis for the C-17 avionics system was the recommendation of an APM upgrade
demonstration. Several factors supported this recommendation. The OFP was well designed JOVIAL
from Hamilton standard and Boeing had taken over doing software updates to the system. The C-17
project was considering an upgrade to the APM with the objectives of:
• Mitigating the hardware obsolescence of the 1750 processor and other components, and replacing the

JOVIAL software and its SEE.
• Migrating its features into the CIP as a general integration of federated subsystems.

The Hybrid approach was ruled out since the APM has non-separable obsolete components and a
software architecture that is customized for the hardware configuration. A rehost option was briefed as a
possibility but not the preferred approach. The JOVIAL OFP could be rehosted and a JOVIAL compiler for
the COTS target existed. However, the cost factors for a rehost indicated it was not the best solution. In
addition, the F-15 demonstration was a rehost and better experience with the IULS tools would be
obtained by using a different approach for the C-17.

The recommendation for an APM upgrade demonstration was the emulate approach shown in the following
figure. The APM was the most cost-effective candidate for this approach in the C-17. Its upgrade would
serve as a model for the upgrades of other specialized C-17 and F-15 subsystems such as the Avionics
Interface Unit. The Task 1 emulator analysis and modeling/simulation indicated that the approach was
viable in terms of emulator and application resource usage on a COTS processor. A processor system
and avionics test environment would be available for a “hot bench” demonstration at the C-17 engineering
facility. The demonstration was tentatively planned for the first quarter of CY99.

47

C-17 Demonstration
Partial Emulation/Rehost On C-17 Avionics Bench

VMEbus

I/O
Simulation
ARINC 422
ARINC 429
ARINC 573

Analog

Single Board Computer

Legacy
Component*

Wrapper

Discretes 2-1553

I/O Services

A/PDMC

Card Rack

IULS
Framework

Wrapper
Components

Emulator

General
Processor

• 1750A

1553B
• 8K RAM

Avionics Bus WACS Bus AIDS

 ARINC 573
Output

• 2 Channels

1553B
• 8K RAM

Memory
• 176K ROM
• 32K ROM
• 64K Dual

Port RAM
Memory

Mgmt Unit

 ARINC 429
Outputs

• 7 Channels

FTR/EECs/CPSs

Analog
Inputs

• 30 AC With
Excitation

• 6 DC

Discrete
Outputs

• 6 Outputs

Discrete
Inputs

• 27 Inputs

 ARINC 429
Inputs

• 8 Channels
• 16K RAM

 ARINC 422
I/O

Test

EECs

Address/
Memory/
Control

I/O Services

Ethernet

Green Hills
MULTI

Wind River
Tornado

Workstation

* Candidate Rehost Components

•Stall Warning
•Engine Fault Reporting

Figure 34. Planned C-17 APM Demonstration

It was also briefed that the scope of wrapping/emulating the complete A/PDMC OFP for C-17 was beyond
the IULS program scope/budget. In particular, complete I/O emulation (discrete, analog, etc.) would drive
the cost beyond available IULS funding. The recommended demonstration entailed a partial OFP (Engine
Monitoring function) emulation. However, the recommended partial OFP emulation would be sufficient to
assess the TRW emulator technology and verify the IULS process. In addition, the recommended program
was scaleable to a full A/PDMC OFP demonstration, shown in the following figure, should funding become
available in FY99.

C-17 Demonstration Option
TRW Replacement Emulation/Rehost On C-17 Avionics Bench

VMEbus

I/O Emulation
2-1553

ARINC 422
ARINC 429
ARINC 573

Analog
Digital

Single Board Computer

Wrapper

Discretes Analogs

I/O Services

A/PDMC

Card Rack

Emulator

General
Processor

• 1750A

1553B
• 8K RAM

Avionics Bus WACS Bus AIDS

 ARINC 573
Output

• 2 Channels

1553B
• 8K RAM

Memory
• 176K ROM
• 32K ROM
• 64K Dual

Port RAM
Memory

Mgmt Unit

 ARINC 429
Outputs

• 7 Channels

FTR/EECs/CPSs

Analog
Inputs

• 30 AC With
Excitation

• 6 DC

Discrete
Outputs

• 6 Outputs

Discrete
Inputs

• 27 Inputs

 ARINC 429
Inputs

• 8 Channels
• 16K RAM

 ARINC 422
I/O

Test

EECs

Address/
Memory/
Control

I/O Services

A/PDMC
OFP

Serial
Busses

I/O Services

IULS
Framework

Wrapper
Components

TRW
Framework

Wrapper
Components

Wrapper

Figure 35. Optional C-17 APM Demonstration

48

5.3.2 C-17 CCU
Subsequent evaluation by the C-17 SPO indicated that the Communications Control Unit (CCU) was a
more viable upgrade candidate than the APM. At that time the APM hardware obsolescence problems had
been mitigated for the short term. The SPO believed that the CCU was more likely to be upgraded and
evolve to an open system architecture. Addition of GATM and other new functionality would drive a CCU
upgrade before an APM upgrade. The CCU would provide an interface-rich complex test of emulator
capabilities. The CCU is a well-documented OFP and is functionally separable into essentially independent
major components. The functionally separable nature of the CCU OFP made it an ideal candidate for a
phased approach to upgrade and incremental demonstration of the utility of the emulation approach to
rehosting OFP components to COTS hardware. Through a series of discussions, and execution of a cost
benefit analysis, the demonstration was redefined with the CCU as the target for emulation and wrapping.
The cost benefit analysis was also instrumental in securing additional funding required to carry the
demonstration through execution and verification. Subsequently, a program plan evolved under which:
• The CCU emulation would be carried through a laboratory demonstration of wrapped Radio Control

Function (RCF) of CCU operating on PowerPC under IULS funding (see following figure)
• Analysis of RCF emulation problem to verify applicability of emulation technology to CCU upgrade
• Demonstration to gauge utility of emulation technology and provide initial metrics
• Demonstration to provide final gate before execution of TDs

VMEbus

I/O Emulation
2-1553

Single Board Computer

Wrapper

Discretes Analogs

I/O Services

Card Rack

Emulator

I/O Services

CCU OFP

Serial
Busses

I/O Services

IULS
Framework

Wrapper
Components

TRW
Framework

Wrapper
Components

Wrapper

CCU
CPCI

BCRT #2
Secondary 1553
Bus Transaction

CNC

ICU, ISU

UHF, VHF

IFF

CCU

MCK
BCRT #1

Primary 1553
Bus Transaction

Serial
Interface

RS232

Discrete

RS422
Serial Bus
Transaction

Audio
Control
Interface

ANDVT
Interface

Transponder
Interface

KY/Discrete
Interface

Satcom
Interface

PA Audio
PTTS
Radio Audio
Mic Audio
Headphone Audio
Morse Code Audio

Discrete

Discretes

CAWS

Radar Beacon Transponder
(APX-105)

IFF (APX-100)
Transponder Test Unit

APU I/O
Morse Code

KY, Discrete
Serial I/O

ANDVT Discrete,
Serial I/O

Analog
Discrete I/O

Satcom (ARC-187 UHF)
Discrete I/O

Serial Data

Discrete

SATCOM Control

Discrete

Serial Data

NAV Audio

Transponder Control

ACP / Ruggedized
Laptop Computer

HF (ARC-190)

(Advanced Narrow Band Dig.
Voice Terminal)

Figure 36. CCU Laboratory Demonstration Concept

• Two Technology Demonstrations would be executed under separate funding

• The first (TD-1) would demonstrate integration of emulation wrapped RCF on PowerPC in CCU
compatible VME chassis at the Avionics Software Integration Facility (ASIF) – Long Beach

• The second (TD-2) would demonstrate full emulation wrapped CCU functionality.

5.3.3 C-17 CIP
The CIP was also a good candidate because it (like the F-15’s VCC) was a fairly typical mission
processor. It was unique to current military transports in that it was COTS hardware and contained an
OFP written in Ada83. It also represented a mission computer software domain that did not have detailed
display format driver components and worked in conjunction with “smart” cockpit displays. There are two
CIPs in a C-17, which are synchronized and can backup each other.

49

Flight
Control

Computer
1-4

Mission
Computer/

Comm
Keyboard

1&2

Aircraft/
Propulsion

Data
Management

Computer
1&2

Central
Integrated
Processor

1&2
(MC 1-3)

Mission Bus 1&2

Multiplex Bus

Discretes

Air
Data

Computer

Automatic
Flight

Control
Panel

Bearing
Distance
Heading
Indicator

Central
Aural

Warning
System

Comm/
Navigation

Control
Panel

Data
Transfer
Device

Global
Positioning

System

Head-Up
Display

Inertial
Reference

Unit

Radar
Altimeter

Spoiler
Control/

Electronic
Flap

Computer
1-4

Multifunction
Display

Station
Keeping

Equipment

VOR/ILS
Marker
Beacon
Receiver

Weather
Radar

Interface
Unit

Automatic
Direction
Finding

Tactical
Air

Navigation

Aerial
Delivery
System

Airframe/
Engine

Annunciator
Display

Unit

Avionics
Switching
Control
Panel

Control
Stick

Assembly

Maintenance
Interface

Panel

Figure 37. CIP Context

The CIP hardware was a new unit from Lockheed Martin containing 6U VME cards in a VME-64
backplane/chassis with many spare slots. The initial configuration as shown in the following figure included
a Computer Processor Module containing an R4400 and its OFP on SUROM, an Input/Output Processor
also containing an R4400 with two 1553 Channels, and an Input/Output Module for discrete I/O.

Computer
Processor

Module
• R4400
• DRAM
• SUROM

Input/Output
Processor

• Dual Channel
 1553
• R4400
• DRAM
• SUROM

Input/Output
Module

• Input Discretes
• Output

Discretes

1553 Channel 1&2 Growth

VME64

Discrete I/O

Figure 38. CIP Hardware Configuration

The CIP OFP was mostly Ada83 with some C driver components. It had been translated from the JOVIAL
MC OFP, using a tool provided by Hughes. It contained the VxWorks real-time operating system (RTOS)
from Wind River Software and was developed on Sun Workstations using a Rational host compiler and
Green Hills target compiler. The CIP OFP’s major features were similar to those of combat aircraft OFPs.
 The major differences were that the CIP provided more navigation/guidance modes and flight/mission
planning services that are typical of transport aircraft, but did not support weapon delivery.

CIP Features

• System Management and Monitoring
• Communications Management
• Navigation
• Guidance
• Controls and Displays

50

• Aircraft Performance Prediction
• Flight Planning
• Database Management
• Data Interfaces
• 1553 Busses
• Discrete Interfaces

Potential C-17 Upgrades Which Affect CIP and APM Features
• Traffic Alert and Collision Avoidance System (TCAS)
• Autonomous Landing Guidance
• Replacement of cockpit displays
• MD-17 Commercialized Avionics
• Global Air Traffic Management (GATM) avionics
• Special Forces avionics

Although the decision was made not to pursue a CIP upgrade using IULS tools the CIP eventually played a
key role in the IULS Technology Demonstrations. As described below under TD-1 and TD-2, the decision
was made to redefine TD-2 to focus on integration of the TD-1 hardware and software into the CIP.
Results of these attempts are described under TD-2 below.

5.4 CCU Laboratory Demonstration
The initial effort in support of the C-17 CCU emulation demonstration was the CCU Laboratory
Demonstration which was executed under IULS funding to demonstrate the viability of the emulation
approach to the CCU upgrade. The CCU Laboratory Demonstration included two phases:
• In the first phase an analysis of the emulation of the RCF of the CCU was executed
• In the second phase, emulation technology was applied to develop wrapper software for the RCF

function of the CCU and performance was demonstrated in a laboratory environment.

As shown in the following figure, the program was structured such that successful completion of the
domain analysis (Phase 1) was an entrance criterion for the demonstration phase (Phase 2). The figure
also shows the various elements required for successful execution of the Phase 2 demonstration. Finally
successful completion of the Phase 2 demonstration was specified as an entrance criterion for Phases 3
and 4.

< Phase 2 - Gate >

Radio Control
Function

Demo

COTS Board Set

OTS
Emulation
Product

COTS S/W

Exec, Drivers

Wrapper S/W
(Develop. Item)

Domain
Analysis CCU

< Phase 1 - Gate >

Emulated

Radios

OFP Build
Image (V8.2)

Figure 39. CCU Demo Gates

51

5.4.1 Phase 1
The Phase 1 analysis consisted of the following:
• Domain Analysis
• Evaluation of the Utility of the Emulator
• Develop Demonstration Plan.

The domain analysis considered all CCU functionality, software and interfaces with major focus on the RCF
functions. Particular attention was paid to the 1553 RCF functions and discretes. The analysis determined
specific interfaces to be supported and functions to be emulated. The emulator evaluation was tightly
coupled with the domain analysis since emulator capabilities and modifications were integral to decisions
regarding scaling of the functionality to be emulated. The emulator evaluation identified required
modifications to the TRW RePLACE tool and API, major risk areas and provided ballpark estimates of cost
and schedule. TRW participated throughout the domain analysis in their role of emulator developer. The
results of the domain analysis / emulator evaluation was a set of requirements for each demonstration
phase which were executable within program resources. The consensus of the team was that the Phase 2
demonstration should focus on wrapping of the RCF with simulated 1553 interfaces and radios. The
demonstration should be executed at the C-17 SPO. Phase 3 would deliver a ruggedized PowerPC
system and emulation wrapping with real vice simulated 1553 interface devices (radios). Phase 4 would
deliver a wrapped CCU system with audio and radio control functions on a ruggedized PowerPC. The
Phase 3 and 4 demonstrations would be executed in the AIA at Long Beach. A top-level description of the
content of the three demonstrations is shown in the following figure. The figure includes changes in content
which are discussed under TD-1 and TD-2 below.

Elements Phase 2 TD-1 TD-2
COTS Board Set PowerPC, Dual 1553 PowerPC, Dual 1553,

Discrete IO card
PowerPC, Dual 1553,
Discrete IO card, CIP

COTS S/W VxWorks RTOS,
Tornado IDE

VxWorks RTOS,
Tornado IDE

VxWorks RTOS,
Tornado IDE

OTS Emulator RePLACETM v1.1,
VIEWstation™ v1.0

RePLACETM v1.1,
VIEWstation™ v1.0

RePLACETM v1.2,
VIEWstation™ v2.0

Wrapper S/W 1553 I/O, Discretes
memory mapped

1553 I/O, Discrete I/O 1553 I/O, Discrete
I/O, Integration into
CIP

OFP Build Image Version 8.2 Version 8.2 Version 8.2

Radios Simulated UHF &
VHF only

Real UHF, VHF, HF,
ARC-210, IFF

UHF, VHF, HF, ARC-
210, IFF, APX-105

Audio None None (provided by 2nd

CCU)
None (provided by 2nd

CCU)

Discretes Simulated Real Real

Controls &
Displays

MCK/MCD emulated
on PC, no CNC, ICS

Real MCK/MCD, real
CNC, ICS

Real MCK/MCD, real
CNC, ICS

Demo Event Radio Control thread Redlined 80% Radio
Control SIT

Redlined 85% Radio
Control SIT operating
in CIP

Figure 40. Demonstration Definition

The output of the domain analysis / emulator evaluation were used to develop the demonstration plan. The
team conclusion was that the problem was low risk within the schedule and budget available. The
demonstration plan defined the approach for demonstrating and testing emulated functions including test
signal collection needs and simulation approach. The plan defined the content of the demonstrations in the
following areas: interfaces, functions, displays, risk. It included a task schedule and critical path analysis.
The schedule and top-level content are shown in the following figure. As described below, the content and

52

dates for TD-1 and TD-2 changed in response to programmatic influences. These changes are reflected in
the figure.

1998

• Domain Analysis
• Demo Plan

Domain
Analysis

Phase 2
Demo

TD - 1

TD - 2
• MCK/MCD Control
• UHF, VHF

(simulated)
• Aircrew Laptop

Computer Database
Download

• Fault Mgmt

• Dual CCU
• All Radios (real)
• CNC & ICS
• Redlined Radio

Control FQT

• Radio Control Integrated into
CIP

• Redlined Radio Control FQT

C-17 SPO C-17 SPO Long Beach

1999
3/12 8/31 12/31

Transition to
Proposed
Open System
End State
Architecture

Long Beach

IULS TD Program

Figure 41. Demonstration Schedule

The results of Phase 1 were reviewed with the IULS and C-17 customers and it was agreed that the
program should enter Phase 2.

5.4.2 Phase 2
The Phase 2 demonstration was designed to verify applicability of the IULS emulator technologies and
processes to the C-17 CCU domain. Exercise of limited CCU functionality and a subset of the external
interfaces was established as an entrance criterion for development of a more complete solution under the
Weapon System Software Technology Support (WSSTS) contract. The WSSTS effort would include
Phases 3 and 4 of the demonstration. Phases 3 and 4 are also known as C-17 Technology
Demonstrations 1 and 2 or TD-1 and TD-2.

The focus of Phase 2 was to demonstrate emulation of MIL-STD 1553 I/O including emulated UHF and
VHF radio control. The ability to communicate over the RS-232 interface was also a demonstration goal.
The following figure provides a logical view of the C-17 Integrated Radio Management System (IRMS) with
the Phase 2 demonstration elements shaded. The MCK/MCD elements are the Mission Control Keyboard
and Mission Control Display, which were emulated in the demonstration and used to exercise the MIL-STD
1553 interface.

53

APX-105

ARC-210 #1

TACAN

Radio (UHF1)

IFF

NAV (PLSR or..)

ANDVT

P.A.

NAV (PLSR or..)

Radios (HF)

Radios (VHF2)

ARC-210 #2

ADF Rcvr

BC
RT

BC
RT

BC
RT

BC
RT

CCU NO. 1

CCU NO. 2

Audio
Discrete/

Analog

Discrete/
AnalogAudio

CNC

CNC

ARC-210
RCU

MCK
MCD

MCD

MCD

MCD
MCK

ICSs

ICSs

ISU

ISU

MSN
1553

MSN
1553

1553
(COMM 1 BUS)

1553
(COMM 2 BUS)

Head
Phones
Typical
(1 of 9)

Figure 42. C-17 IRMS Elements Demonstrated in Phase 2 (Logical View)

In the Phase 2 demonstration configuration, a commercial VME Chassis containing a PowerPC 603e with
Ethernet, 200 MHz Dual 1553 and single-channel RS-232 interfaces acted as CCU No. 1. The CCU
Legacy OFP wrapped with TRW’s RePLACE 1750 Emulator executed on the VME-enclosed PowerPC. A
laptop computer was tied into the RS-232 interface to support Aircrew Laptop Computer (ALC) Database
Download. A separate PC, which acted as the MCD/MCK emulator, was tied into the MIL-STD 1553
interface. Another laptop was tied into the MIL-STD 1553 interface and connected to the VME Chassis by
Ethernet. This latter laptop executed TRW’s VIEWstation Debug Toolset. UHF and VHF radio control was
emulated using the PASS-3000 1553 Bus Emulator. The physical view of the Phase 2 Demonstration
Configuration is shown in the following figure.

54

PASS-3000
1553 Bus
Emulator

Radio (UHF1)

Radios (VHF2)

BC
RT

BC
RT

CCU NO. 1

CCU NO. 2

RS-
232

Ethernet

Aircrew Laptop Computer
(ALC) Database Download

TRW's
VIEWstation™
Debug Toolset

MCD

MCD
MCK

MCD
1

MCD
2

MCK/MCD Emulator

Not Present

VME Chassis
PowerPC 603e, 200 MHz
Dual 1553 VME Interface

VxWorks RTOS

Native
Environ.

L
eg

ac
y

E
n

vi
ro

n
m

en
t

ISA
µcode

I/O
Emul.
S/WV

ir
tu

al
 C

o
m

p
. E

nv
ir

.

TRW's RePLACE™
1750 Emulator

CCU Legacy OFP

COMM1

COMM2

Figure 43. Phase 2 Demonstration Configuration (Physical View)

The Phase 2 Demonstration executed a subset of CCU OFP functionality selected to satisfy the objective
of validating the emulation approach on an expedited schedule. The following figure shows CCU OFP
Components and indicates the extent to which they were exercised in the demonstration.

IO $
PROC

FLT $
MNGNT

ICS $
PROC

AUDIO $
PROC

EXEC

RADIO $
CTRL

CNC $
PROC

BIT $
PROC

SHUT-
DOWN

START-
UP

MCK $
PROC

DSP $
MNGR

POWER
WARNING
STATUS

NVRAM

NVRAM

CCU FAULT STATUS

TEST SEQUENCE

OFFLINE
FAULT
STATUS

ONLINE
FAULT STATUS

ANALOG
DISCRETES

RS422

RS232

1553

INPUT ARE
DISPLAY

PARAMETERS

INPUT ARE
RADIO CONTROL

DATA

RADIO
OUTPUT

DATA

CNC
REQUEST

ICS
REQUEST

INITIATED BIT
SEQUENCE

TEST
SEQUENCE

AUDIO
CONTROL

DATA

APUs
OUTPUT

DATA

MCK
REQUEST

INPUT
QUEUES

MCK
OUTPUT

DATA

Information Flow
Diagram (from CPDS)

CPC Bypassed

CPC Not Exercised

CPC Exercised

Database
Upload

Figure 44. CCU OFP Architecture Components

The primary concern regarding emulator performance was in the area of I/O. The bulk of the modification
to the existing 1750A emulator performed to support the Phase 2 Demonstration were in this area. The
following figure provides an overview of the emulator I/O used in the demonstration.

55

• I/O Device Objects Written:
– BC1553 RT1553 BCRT Discretes
– Audio Discretes ANDVT Discretes KY Discretes
– Analog Transponder SATCOM Discretes Serial IO
– SBC Discretes

• Status of I/O Devices
– Completed Fully Functional 1553 Bus Controller Device Class (RT Class

implemented, to be tested in next phase w/dual CCU)
– Completed Fully Functional Serial IO Class
– Stubbed Out Most Discretes with Static Values

• OFP Code that has been bypassed with "thunks"
– Startup02 Replacement 0x01140 0x00002
– IBit01 Replacement 0x02F79 0x00157
– RegReadbk01 Replacement 0x022EA 0x00049
– XIOREDBLACK Replacement 0x0105F 0x0000A

Figure 45. Overview of Emulated I/O

The demonstration procedure entailed 8 steps:
• Loading of Emulator and CCU OFP
• Cold Startup of CCU OFP
• Operation of MCK/MCD using MCK/MCD Emulator
• Uploading of Comm Database from Aircrew Laptop Computer
• Reviewing of Comm Database on MCD
• Viewing UHF/VHF Radio Control 1553 Data
• Reviewing Fault List on MCD
• Viewing Emulator Performance

The Phase 2 demonstration was performed at the C-17 SPO on 12 March 1999. The following functions
were demonstrated:
• Mission Control Keyboard (MCK) / Mission Control Display (MCD) operation – verified the ability to

communicate on the MIL-STD-1553 bus
• Communications Database uploading – verified the ability to communicate over the RS-232 interface
• Display uploaded Communications Database – verified the ability to use uploaded database

information
• Control an emulated radio – verified the ability to communicate with devices on the MIL-STD-1553 bus
• Demonstrate status functionality.

There were several lessons learned from the demonstration:
• Lack of discrete interfaces & real hardware devices requires carefully tweaking stubbed out discretes

& careful modeling of some of them
• Having LRU/OFP domain expertise on-site during integration will accelerate the effort
• Adequate time should be allocated to assemble & checkout the various components of the test

environment
• Care should be taken to ensure that the OFP and its documentation are consistent (same version).

This can be a quite common problem when very old legacy software is used, and the documentation
has not kept up with the pace of software changes

• Getting the OFP up & running can be successfully accomplished in a very short time period after i/o
devices have been completed (2-3 weeks in this case).

The demonstration made to the C-17 SPO was a major success. The program was described by Chris
Blake (then Technical Director) "This is great work...(to AFRL) your 6.3 funding will get even tighter, but
we can't let go of this one...(to Boeing) I'm offering to be your launch customer...(to Hartman - Chief
Systems Engineer) let's make this happen."

56

Following the execution of Phase 2, initiation of the Technology Demonstration Program (Phases 3 & 4)
was approved. The major areas of risk were all considered low after completion of the demonstration, as
shown in the following figure.

Risk Factor Severity Mitigation Plan

Fidelity Of
Emulation
Including Timing
Dependent Code

Low -
Moderate

§ Analysis Of OFP And Utilization Of
Thunks & Wait Loops – 4 thunks installed
§ Addressed During Phases 2 & 3

Adequate
Throughput For
Emulator, I/ O
Wrapper, & New
C Code
Function(S)

Low –
Moderate

§ Emulator Measured <=10% Of Available
Throughput;
§ I/ O Wrapper Performance To Be

Measured In Phase 2 (< 15% Expected)
§ Emulator running at 6.5 MIPS w/ IO

wrappers (~ 85% excess margin)
§ Audio Code Performance To Be

Measured & Used To Project OS-CCU
Perf. (< 25% Expected) not needed
§ Addressed During Phases 2,3,4

Interfacing New C
Code To Existing
Jovial Object Code

Low § CCU OFP Is Well Structured With Logical
Interface Boundaries Between Functions;
§ Debug Toolset Assists User In Hooking

Into Legacy Code
§ Addressed During Phase 2

Figure 46. Post Demonstration Risk Assessment

5.5 C-17 Technology Demonstration 1 (TD-1)
IULS TD-1 built upon the success of the Phase 2 demonstration. TD-1 was designed to accomplish all
objectives of the Phase 2 Demonstration, but in a more realistic environment and with additional
functionality. Significant changes from the Phase 2 Demonstration to TD-1 included:
• Emulator and CCU OFP operation in a workstation environment

• Emulator and CCU OFP operations in COTS Replacement Box (CRB) environment
• CRB Connected to the IRMS Subsystem Evaluation Station in place of either CCU

• Operation of MCK/MCD using MCK/MCD Emulator
• Operation with both real and emulated MCK/MCDs
• Operation of CRB with actual C-17 Line Replaceable Units (LRUs) including second CCU, ICS

panels, CNC panels and radios
• Uploading of Communications Database with current or follow-on ALC
• Reviewing Communications Database on MCD

• Preset selection and loading for all radios including SATCOM
• ARC-210, UHF, VHF, HF, and IFF Radio Control

• Discrete wires individually control power and antenna selection for each radio
• Reviewing fault list on MCD

• Fault History recorded and displayed identically to second CCU
• Interactive and non-interactive Build-In-Test controlled by CRB for each interfacing LRU

• Audio functions undisturbed in second CCU
• CCU 2 controls audio routing for all radios

• CIP/CCU/CRB 1553 handshake undisturbed

57

• EMCON, TACAN, ADF function normally

The following figure gives a logical view of the CCU Demonstration Plans for TD-1 and TD-2. The Phase 2
Demonstration is included for reference. As can be seen from the figure each of the TDs add to the
demonstration content. It should also be noted that this logical view does not tell the complete story. For
instance, CCU No. 1 appears the same for the Phase 2 Demonstration and TD-1 on the logical view. In
actuality, the TD-1 implementation was of higher fidelity in this area as described below in the discussion of
the COTS Replacement Box.

APX-105

ARC-210 #1

TACAN

Radio (UHF1)

IFF

NAV (PLSR or..)

ANDVT

P.A.

NAV (PLSR or..)

Radios (HF)

Radios (VHF2)

ARC-210 #2

ADF Rcvr

BC
RT

BC
RT

BC
RT

BC
RT

CCU NO. 1 - PowerPC

CCU NO. 2 (Real CCU)

Audio
Discrete/

Analog

Discrete/
AnalogAudio

CNC

CNC

ARC-210
RCU

MCK
MCD

MCD

MCD

MCD
MCK

ICSs

ICSs

ISU

ISU

MSN
1553

MSN
1553

1553
(COMM 1 BUS)

1553
(COMM 2 BUS)

Head
Phones
Typical
(1 of 9)

Phase 2, TD-1&2

TD-1, TD-2

TD-2

Functional Audio

CIP

Figure 47. CCU Demonstration Plan (Logical View)

The IULS TD Program was structured with TD-1 as a gate for TD-2. The following figure depicts this gate
structure along with the principal elements of TD-1.

58

Add. CCU FCNs
(Audio)

Demo

Open S/W

< Phase 2

 Gate >

< Phase 3 - Gate >

Radio Control
Function

Demo

OTS
Emulation
Product

COTS S/W

Exec, Drivers

Wrapper S/W
(Develop. Item)

Real Radios

OFP Build
Image (V8.2)

COTS Board Set

Qual Test

CCU Interfaces

Figure 48. CCU Demo Gates

A key element of TD-1 was the CCU COTS Replacement Box (CRB). The CCU CRB is a computing device
capable of functionally emulating either legacy CCU LRU. The rear panel of the chassis holds connectors,
which provide connection to the CCU I/O signals. The CCU CRB also connects to a Personal Computer
(PC) known as the CRB User Console that executes download, test, and control software. The PC
connects to the CRB via both Ethernet and RS-232 connections. A critical component of the CCU CRB is
the processor board, which executes the RePLACE 1750A Dual Instruction Set Computer (DISC) software
and the CCU OFP. The processor board is a SP-103 Lockheed Martin Federal Systems (LMFS)
PowerPC 603e 200MHz single board computer housed in a VME64 chassis. The CCU CRB contains I/O
interface boards to provide the I/O signals required for emulation of the legacy C-17 CCU. The I/O
interface boards send and receive the same signals as the legacy C-17 CCU LRU so that the CCU CRB
can serve as a functional drop-in replacement for the C-17 CCU LRU. The CCU CRB communicates with
an external PC used as a User Console. The User Console acts as a file server, providing software and
data files needed by the CCU CRB. The User Console also downloads and starts the CCU CRB software.
 The CRB replaces the commercial VME Chassis, PowerPC and interfaces used in the Phase 2
Demonstration.

The following figure shows the TD-1 Demonstration Configuration. Comparison with the Phase 2
configuration, shown previously, highlights many of the changes. The figure shows: the availability of dual
MCK/MCD’s vice the emulated MCK/MCD used in the Phase 2 demonstration, utilization of the MCK/MCD
to host the VIEWstation toolset and perform the ALC Database Download, single or dual CCU
configuration, and the inclusion of real radios. Not visible from the figure is the contribution of the CRB.
The CRB includes the VME Chassis etc and supports testing of the radio discrete interfaces.

59

Radio (UHF1)

Radios (VHF2)

BC
RT

BC
RT

BC
RT

BC
RT

CCU NO. 1

CCU NO. 2

No
Audio

Disc.
I/O

Disc.
I/O

No
Audio

Aircrew Laptop Computer
Database Download

VIEWstation™
Debug Toolset

Legacy CCU

VME Chassis
PowerPC SP-103, 200 MHz
Dual 1553 Interface
Discrete I/O VME I/F

VxWorks RTOS

Native
Environ.

L
eg

ac
y

E
n

vi
ro

n
m

en
t

ISA
µcode

I/O
Emul.
S/W

V
ir

tu
al

 C
o

m
p

. E
n

vi
r.

1750 Emulator

CCU Legacy OFP

COMM1

COMM2

MCD

MCD
MCK

MCD
1

MCD
2

1st MCK/MCD

ARC-210 #1

IFF

Radios (HF)

ARC-210 #2

MCD

MCD
MCK

MCD
1

MCD
2

2nd MCK/MCD

CNC

ICSs

CNC

ICSs

Figure 49. TD-1 Demonstration Configuration

TD-1 was completed in August 1999. The following items were demonstrated:
• Operation of CRB acting as a single CCU
• Dual CRB – CCU operation
• Communications Database upload with current and follow-on ALC
• Operations with MCK/MCD, CNC, ICS
• Operations with all radios (ARC-210, UHF, VHF, HF) and IFF
• Audio control and switching with CRB and second CCU controlling audio as “Alternate”

Initial bench-marking performance indicated 6.0 MIPS compared to 6.5 MIPS at March demonstration,
largely due to additional processing. This represents approximately a 90% reserve above the legacy
1750A processor.

There were no major anomalies during the testing. Four minor anomalies were observed and were
subsequently dispositioned. The decision was made to proceed with TD-2.

5.6 C-17 Technology Demonstration 2 (TD-2)
By the time of initiation of TD-2 the demonstration had undergone considerable redefinition. The original
plan (12/98) had been to add TCOMMS Audio Switching in TD-2. Before initiation of TD-1, this plan had
been revised. Audio switching was eliminated because of Telephonics costs and interface to the APX-105
Transponder was added. The original approach emphasized use of Telephonics TCOMMS software to
perform the audio switching function, and the use of emulation for the remaining radio control functions.
Audio switching functionality costs based on integrating off-the-shelf TCOMMS software were substantially
above available funding and made this original element of TD-2 impossible to execute. As an alternative,
Boeing Long Beach recommended (and we received C-17 SPO concurrence) to replace audio functionality
with execution of CCU functionality by integrating CCU COTS processor into the CIP. The rationale for
these changes were the non-recurring costs for the audio switching and the C-17 Program interest in CIP
integration as a potential end-state.

The TD-2 kick-off was held following the TD-1 demonstration on 26 August and served to re-prioritize
some of TD-2 activities following the success of TD-1. The priorities were developed jointly by the C-17
SPO and the C-17 program at Long Beach and were selected to better enable C-17 to incorporate results
of the Tech Demo program in their C-17 Open Systems Communication architecture study. Specifically, the
following priorities were made: 1) Transition CCU OFP baseline from 8.2 to 8.3; 2) Incorporate emulation

60

wrapped OFP into CIP; 3) Incorporate C language fixes to 8.3 software into the emulation wrapped OFP;
4) Investigate ANDVT. The incorporation of APX-105 radar transponder was viewed by C-17 as of only
limited utility, since during TD-1 we have already demonstrated interface of wrapped software with a wide
variety of other 1553 devices.

Initial integration for TD-2 was conducted at Long Beach on 27 - 30 September 1999. The activity
included: 1) Incorporation of CCU OFP baseline 8.3 into the CRB; and, 2) Initial CIP integration of SP-103
and discretes into the CIP. The upgrade of CCU baseline from 8.2 to 8.3 proceeded very smoothly.

Initial integration of the CRB components into the CIP did not go as smoothly as desired. The SP-103 was
successfully integrated into the CIP using a VME extender card. However, the CIP was not able to work
with both the SP-103 and the discrete I/O boards installed on VME extenders in the CIP chassis.
Specifically, the CIP would either go into a degraded mode or not work at all with more than one extender
card in the chassis. This appeared to be due to system losses as the bus was extended. Lockheed
Martin CIP personnel at Long Beach reported that was also their experience. Also, the VMETRO VME
bus analyzer tool did not fit within the channel guide. The discrete boards and VME repeater boards had
card layouts that allowed component contact with the chassis. To accommodate operation in the CIP, the
discrete card layout would need to be modified to utilize less board space. This may or may not be a
problem with ruggedized COTS discrete I/O boards.

Boeing and TRW developed two plans in response to work around the CIP chassis limitations: 1) Plan A;
and 2) Plan B. The plans were documented in the minutes of a TIM held on 7 October in Dayton. Through
subsequent evaluations, Plan A was identified as the preferred approach.

The following figure shows the approach for plan A. Briefly, the SP-103 board would be installed in the
CIP chassis. A VME Repeater Master card would be installed in the CIP and connected with a "Slave"
card in the CRB. The discrete I/O boards would be installed in the CRB. In essence, this is the same
arrangement as a CIP integration (assuming that ruggedized discretes would fit within the chassis).

IMPLEMENTATION PLAN “A”
VME Repeater Master - Slave

P
O
W
E
R

I
/
O

I
O
P

C
P
M

S
P
1
0
3

V
M
E

R
P
T
R

A
R
C
O
M
A
G

CIP

V
M
E

R
P
T
R

CRB

A
R
C
O
M
A
G

A
R
C
O
M
A
G

LM SP-103
Moved from CRB to CIP
Operating on Extender

VME Repeater “Master” installed
in CIP. “Slave” in CRB.

All VME bus arbitration occurs in CIP Chassis

Figure 50. CRB CIP Integration Plan

Boeing performed a second integration of the wrapped Radio Control Function (RCF) in the CIP starting 1
November. The November integration activity used Plan A from the October TIM. The second integration
activities proceeded with limited success largely due to the somewhat non-standard VME nature of the
CIP. TRW and Boeing discussed the integration issues with the CIP vender. The vendor indicated: 1)
Need for current SP-103 drivers; and 2) Need to cut traces in the CIP backplane. Given these, they
indicated that they believed the integration would work.

61

Most important, Boeing IULS personnel met with Boeing C-17 personnel relative to the communication
open architecture study and to CIP integration progress. They described their efforts in CIP integration
and relayed to the C-17 personnel the results of the telecon with the CIP vender. Boeing C-17 indicated
that he could possibly get a spare CIP chassis to use to implement the vender suggestion. They also
indicated that Boeing C-17 no longer consider integration into the CIP as either a mid or short-term
objective. Instead they viewed it as a very long term (C-17B) type of goal. Based on this significant C-17
change of philosophy, the IULS TD program decided that it no longer made sense to pursue integration
activities with the CIP - since the transition story had for practical purposes evaporated. Instead, tech
demo efforts focused on evaluation of the emulation tool by C-17 personnel - especially in its support of
incorporating new C++ software. Specifically, we believed that for a tech transition story to have real
longevity, it would be necessary to not simply emulate a legacy system - but also to demonstrate how the
system could support new functionality developed using modern languages including C and C++.

Following initial RePLACE training by TRW, Boeing S/W engineering personnel initiated their development
of the C-language software update to CCU OFP version 8.3. They continued their efforts, and were able
to incorporate their update into the wrapped RCF. The software engineers wrote a draft report discussing
their observations on use of the emulation toolset. The report indicated that the engineers were able to
accomplish their job without difficulty. The report also provided both positive observations on the toolset,
but also indicated some desired updates. It also indicated that successful use of the tool required domain
expertise. Some potential hardware problems with the CRB were reported by the engineers who were
working the C-language update. These problems have been resolved, and were indicated to be AISF
related, and were not CRB problems.

The final disposition of TD-2 is:
• Ease of incorporating update of legacy Jovial OFP from 8.2 to 8.3 was demonstrated

• Less than one day of activity
• Successfully executed subset of System Integration Test (SIT)

• Successful execution of C-language update of Jovial Code
• Boeing C-17 developed challenge problem
• Training on emulator provided by Boeing IULS team to Boeing C-17 software developers
• Code developed and initial testing by Boeing C-17 in ASIF
• Successful employment of technology demonstrated

• Oct 99 integration
• COTS Discrete cards did not fit in CIP chassis (impinged on wedge locks)
• PowerPC and Discretes on Extender Board in CIP
• CIP operated in degraded mode
• Probable cause losses as bus extended
• Coincides with CIP vender experience

• Nov 99 integration
• PowerPC on extender board in CIP
• Discretes in CRB
• Bus conflicts
• Boeing/CIP vender discussions indicated cutting of traces for backplane and installation of latest

PowerPC driver probably required but could be made to work
• CIP date preceded VME-64 bus standardization

• C-17 Program and IULS Team Meeting indicated CIP incorporation of RCF no longer in near / mid-term
plan

• CIP integration efforts suspended

5.7 C-17 Communications Open System Architecture (COSA)
The C-17 program embarked on the COSA program during the summer of 2000. Figure 51 shows a
COSA program history.

62

1998 1999

PTP-077
GATM Initiatives

8 Jan 98

Revised PTP-077
GATM Initiatives

24 Apr 98

•GATM
 - CPDLC, ADS-A,TCAS,
 CMU, AERO-I, APX-100
 Mode S
•IRMS
 - Legacy CCU analog
 audio update
 - Modified ICS
 - No CNC changes
 - No HRP changes

•~$85M development total

•GATM
 - CPDLC, ADS-A,TCAS,
 CMU, AERO-I, APX-100
 Mode S
•IRMS
 - Legacy CCU unchanged
 - ICS, CNC unchanged
 - P/CP HRPs modified,
 SAT audio panel added
 - CCU controls Mode S
 - CIP controls AERO-I

•~$61M development total

PTP-077
SRR/JCB

May - Jun 98

•AMC / SPO concerned
by non-integrated GATM
solution
•Recommended launch of
separate OSA project for
IRMS
•Nov 97 architecture as
baseline

COSA Study
May - Dec 99

C-17 Avionics
Phase I OSA Study

Aug - Dec 98

•OSA CCU
 - Digital Audio
 - Radio Control in CCU
•OSA CNC
•OSA HRP
•COSSI ICS
•Sat audio panel deleted
•No 1553 bus architecture
 change

Figure 51. COSA Program History

The COSA study concluded in December 1999 and resulted in the initiation of an ECP for implementation
of an open architecture upgrade of the C-17 communications system. Telephonics, the producer of the
current legacy CCU, was selected as the lead subcontractor. Key elements of the COSA program are
identified in the figures below.

o System upgrade of the existing Integrated Radio Management

o OSA CCU/Audio Control Unit replaces legacy CCU
lIncorporates digital audio

lProvides secure communication operations at all stations

lSystem control functions remain in the CCU

—1553 bus control

—Radio selection, operation, and control

—MCD user interface
lMitigates DMS/obsolescence

lExpansion capability to support future requirements

—GATM Enhancements

—VHF Data Link

—Real Time Information in the Cockpit

Figure 52. Key COSA Program Features

Additional key COSA elements are: 1) 1553 Bus Architecture remains unchanged with no impact to mission
bus loading and address usage; 2) Upgraded CNC and ICS control panels to “soft panel” configuration;
and 3) CIP functions remain unchanged. These latter changes were consistent with the IULS TD decision
to abandon integration of CCU functionality into CIP. The final issue in the COSA program was the role of

63

IULS technology. Following several option evaluation TIMs, the Air Force decided with Boeing C-17
Program concurrence to transition IULS emulation technology into the COSA EMD program. Specifically,
emulation would be used as an integral element of the development for the radio control function. A key
contributor to this decision was the potential cost savings realizable based upon a REVIC line of code
analysis of alternatives. However, the use of emulation is still considered by the C-17 Program as a
program risk that needs to be mitigated through additional prototyping and testing. The figures below
display the COSA development approach that is being executed during the EMD program.

Boeing
Phase I

Flight Test

Block 12
Legacy

CCU
OFP

Boeing

FQT
Block 12

Legacy CCU
OFP

Boeing P-71

Telephonics

TRW

Sell-Off

TRW / Boeing

New
Development

COSA
Code

Telephonics

Hardware
Software

Integration

Telephonics

TCOMSS
Code

Telephonics

FQT
COSA
CCU
OFP

Telephonics

Qualified
COSA
CCU
OFP

Telephonics

RePLACE
Block 12
Legacy

CCU
OFP

RePLACE
Block 12
Legacy

CCU
OFP

S/W
Program

Integration
Test

Telephonics

COSA CCU S/W Integration

RePLACE
Thunk

Develop

S/W
Unit
Test

Figure 53. Key COSA / IULS Development Processes

64

P-108

Block 14
HFDL

Requirements

Boeing

Phase I
Flight
Test

Results

Boeing

Software
Change
Analysis

Block 14
New

Development
COSA
Code

Telephonics

Boeing &
Telephonics

Hardware
Software

Integration

Telephonics

FQT
COSA
CCU
OFP

Telephonics

Block 14
Legacy

CCU
Code Modify

Boeing

Block 14
Legacy

CCU
OFP

RePLACE

Telephonics,
Boeing, TRW

Qualified
COSA
CCU
OFP

Telephonics

Software
Change
Analysis

Boeing &
Telephonics

S/W
Program

Integration
Test

Telephonics

COSA CCU S/W Integration

RePLACE
Thunk

Develop

S/W
Unit
Test

Boeing
Phase II

Flight Test

AISF
Upgrade

(Block 16)

Boeing
Phase I

Flight Test

Boeing

Figure 54. Key COSA / IULS Development Processes (Cont.)

These figures demonstrate the key role that IULS emulation engine will have in the COSA program.

5.8 C-17 Summary
The C-17 IULS transition is a work in progress. Our experience indicates that transition can be difficult but
is achievable. Successful transition requires perseverance, patience, as well as an opportunity to perform.
 In IULS, we started down the tech transition path with the C-17 program as our partner. As a team, we
changed demonstration challenge problems to select one that was most relevant to the C-17 and had the
greatest potential to transition to EMD. We launched the IULS tech demonstration program using a
carefully structured four phase approach. The first two phases were executed under the IULS program.
Entry into phase 3 was conditional upon receiving approval of the C-17 program. The phase 2
demonstration was an unqualified success. It received high praise from the customer, and the decision
was made to proceed to Phase 3 to demonstrate the utility of IULS emulation in the C-17 avionics labs.
The demonstration provided a first cut shake out of emulation technology and indicated significant promise.

At the end of phase 2, the C-17 Technical Director was re-assigned to work on the F-22 program. In a
sense, IULS program lost one of its greatest technology transition backers when the TD left. The lesson is
that tech transition to some degree is also driven by advocacy at the top of the production program, and is
not simply driven by technology success or maturity.

Phases three and four of the tech demonstration program were executed on cost and on schedule with
very positive results obtained by execution of existing C-17 test procedures using the CRB. Even with this
success, the transition remained in the balance. Production programs are by their very nature risk averse.
 New technologies such as those offered by IULS are seen as potential risks - even when their
performance has been proven.

Before IULS technology was selected for COSA, a number of options were considered and an exhaustive
trade study was performed. IULS program was a key participant in these studies, and we were able to
successfully make the case that emulation technology was ready for prime time and should have an
important role in the COSA EMD program. One of the central arguments that was made was that use of

65

emulation is a risk mitigator. Re-engineering of the proven legacy code would be costly. We estimated
using REVIC that utilization of IULS emulation technology could potentially save the COSA program on the
order of $3M. This estimate was based on comparing costs for re-engineering into C/C++ approximately
30,000 lines of code vice emulating the function using the RePLACE emulation engine. This argument was
persuasive and was important not simply from a cost perspective - but more from a risk perspective. The
customer may save money by using emulation - but counts it more as a reserve against program risk.

One of the important factors to consider is that in this IULS technology transition, Boeing had key roles as
both the technology customer (C-17 program - Long Beach) , and the technology evaluator (IULS prime).
This provided us visibility into the technology transition selection process that would have been impossible
otherwise. This same opportunity would have likely been not available to an outside technology developer
attempting to transition technology to the production program.

Some other thoughts are germane to transition of emulation technology to a production program. We must
first remember that IULS is all about incremental upgrade. It is about steps along a migration path to an
open system and taking advantage of existing legacy software. In the C-17 COSA program, the customer
needed to balance their desire to make a radical open system architecture upgrade with realities of
program risk. As originally bid by Telephonics, COSA envisioned a complete re-engineering of CCU
software. Telephonics did not intend to utilize any legacy software in their update. The C-17 program was
convinced that an incremental approach afforded them a better short term solution, provided a less risky
transition path to the desired open system end state, and allowed them to utilize a substantial investment in
legacy software.

The COSA program is taking a novel approach to the use of the legacy software that needs to be
considered as the IULS emulation model evolves. Specifically, rather than starting with a legacy executive
and calling new native functionality, COSA is building a new native executive to call selected elements of
the emulated legacy software. While this might be considered a riskier approach, it represents the C-17
program perspective of marching toward the future, and the emulation engine needs to adapt and support
this type of approach. The lesson is that in the technology transition, the customer is the architect of the
design and will be using tools in ways that may not have been originally intended. Failure of the technology
to perform as designed even in the face of new applications can forestall the technology transition. Also,
in some instances the failure may be due to poor or not maintained legacy software design in the first
place.

66

6 Perimeter Attack Radar Characterization System Analysis
The Perimeter Attack Radar Characterization System (PARCS) is a one-of-a-kind sensor system,
developed in the early 1970s for the United States Army Safeguard Ballistic Missile Defense System by
the Western Electric Company, a part of Bell System at the time. The original system design called for
twelve sites, and the system’s logistic support was planned with that in mind. With the signing of the anti-
ballistic missile treaty between the United States and the Soviet Union, full development of the Safeguard
system halted. The PARCS site, at Cavalier, N.D. was the only site that remained open and all available
spares were sent there. These spares have been sufficient to maintain the site through the present time.
However, continued operation is problematic due to imminent exhaustion of the supply of spares.

Incremental upgrade of the PARCS system software, to a Commercial Off The Shelf hardware
architecture, using the IULS methodology and toolset, was identified as a potential avenue of relief for the
PARCS hardware obsolescence challenge. The hope was that a demonstration of the application of IULS
technologies to PARCS could be fit into the Insertion of Embedded Infosphere Support Technologies
(IEIST) program, a new start program funded by the Air Force Research Laboratory. This plan was
contingent upon positive answers to three issues: 1) that incremental upgrade of PARCS software to a
COTS hardware suite using IULS was feasible within reasonable budget limitations, 2) that the upgrade
would be cost effective, i.e. that given the incremental upgrade of the PARCS software, the PARCS
system would be a viable and valuable element of the U.S. space infrastructure, and 3) that informationally
PARCS could be fit into the IEIST Concept of Operations and scenario(s). In order to further assess the
feasibility of this approach, a limited domain analysis of PARCS was executed under IULS funding. This
three phase domain analysis was targeted at determining the feasibility of including PARCS in IEIST by
answering the three aforementioned questions. This report presents the results of that analysis.

In the first phase of the analysis, the IULS tool-set was assessed for applicability to the PARCS hardware
obsolescence problem. Following a streamlined model of the IULS wrapper development process, a top-
level assessment of the PARCS hardware obsolescence problem identified emulation as a promising
wrapper approach. Unique problems, posed by PARCS from an emulation perspective were assessed.
Section 6.1 and subsections present this portion of the domain analysis.

In parallel with the assessment of PARCS emulation problems, a second phase of the analysis dealt with
the cost effectiveness of an incremental upgrade of PARCS. Verifying the cost effectiveness of an
incremental upgrade approach is a critical element of the IULS wrapper development process. The intent
of this second phase was to ensure that any expenditure of resources on PARCS would result in an asset,
which is an integral element of our national defense system well into the 21st century. In support of this
analysis reference materials were analyzed to determine the overall status and complexity of PARCS. This
portion of the analysis was intended to ensure that all problems facing PARCS including the
aforementioned hardware obsolescence issue, were addressed. In addition, USAF plans regarding future
upgrades of the Early Warning System (EWS), were assessed to determine the value of upgrading
PARCS. Both NMD resources and Radar Architecture Migration Program resources were used for this
purpose. The intent here was to ensure that the PARCS asset remains a critical element of our national
defense plans. The results of this portion of the analysis are presented in Section 6.2 and subsections. As
described, this phase disclosed that PARCS faces many problems beyond hardware obsolescence.
These additional problems altered the recommended course of action. Briefly the analysis of Section 6.2
brings into question the efficacy of expending additional resources on PARCS. More importantly, the
detailed cost effectiveness analysis indicates that the only viable approach to PARCS upgrade is to
leverage the on-going activities required to upgrade the Early Warning Radar (EWR) infrastructure to
satisfy National Missile Defense requirements. If PARCS is to be maintained as part of our 21st century
defense structure, it must leverage the investment being made in the EWR infrastructure.

The final phase of the analysis was performed under IEIST funding and is summarized herein. In this
phase IEIST scenarios were developed. Every effort was made to include PARCS derived information in
these scenarios. Results are presented in Section 6.3. In summary, the results are that PARCS offers no
benefit to any of the IEIST scenarios and will not be included in the IEIST program.

67

6.1 IULS Tool-set Applicability to PARCS Hardware Obsolescence
Unique aspects of the PARCS system from an emulation point of view were assessed. These included:
Symmetrical Multi-Processing (SMP) impacts including cache coherency with shared memory and I/O
problems specific to the radar sensor; Instruction Set issues; Basic Operating System (BOS) issue; and
Tactical Operating System (TOS) issues.

6.1.1 SMP Issues
The PARCS Central Logic and Control (CLC) segment, in conjunction with TOS, is a Symmetrical Multi-
Processing (SMP) system. This would require the replacement of each Processor Unit (PU) with an
equivalent COTS processor (recommend the PowerPC) in order to retain the SMP characteristics of the
system. While a single COTS processor might exceed the entire CLC in raw (emulated) performance, it
probably can not service a large number of concurrent real-time events and still meet latency requirements.
Separate COTS processors will also help preserve any fault-tolerant features of the CLC system.

Each PU has a Harvard architecture with separate memory spaces for instructions (Program Store (PS))
and operands (Variable Store (VS)), and all the PUs share the respective spaces with each other. The
instruction space can not be written under program control and therefore the instruction space can be
emulated locally on each of the COTS processors, thereby improving performance.

The PU supports a Duplicate Mode that allows the PU to try and fetch the same instruction simultaneously
from two Program Store (PS) groups. With the instructions stored locally on the COTS processor, this
feature is not needed and the supporting Duplicate Mode instructions can be NOPped.

The Variable Store (VS) is read and written by all the PUs and will require that a cache coherency protocol
be enforced for these accesses. The latest generation PowerPC G4 processor supports a MERSI
(Modified, Exclusive, Reserved, Shared, Invalid) coherency protocol. MERSI assists in the single writer,
multiple reader cache coherency problems. However, for multiple writers, software protocols need to be
enforced. These are addressed by the lwarx and stwcx instructions.

The lwarx instruction sets the RESERVED bit, loads the location specified by the effective address (EA),
creates a reservation on the local processor and communicates the reservation to the other processors. If
another processor updates the specified EA before the local processor executes a stwcx, the
RESERVATION bit will be cleared.

The stwcx instruction attempts to write the specified EA. If the RESERVATION bit is set, the instruction
performs the write, clears the RESERVATION bit, and sets CR0[EQ]. If the RESERVATION bit is
cleared, the write is not performed and CR0[EQ] is cleared. So while the hardware does not guarantee
atomicity, it actively reports when it fails.

The hardware only supports one reservation request. Multiple lwarx instructions without matching stwcx
instructions simply remove the reservation at the previous EA with the reservation at the new EA. Also, in
a multi-tasking environment, the lwarx / stwcx. pair need to be protected with a critical section that locks
out external interrupts.

The SAFEGUARD machine has a similar mechanism with the Fetch and Bias Negative (FBN), Double
Fetch and Bias Negative (DFBN), and Double Conditional Store (DCSB). Instead of a global
RESERVATION bit, the reservation bits are part of the data at the EA.

The FBN and DFBN instructions perform similarly to lwarx except the two most significant bits of the evenly
addressed EA are set to ones. These instructions do not update the parity associated with the EA. If
some other instruction updates the EA prior to the FBN / DFBN instructions and the first two bits are not 00
or 11, then an even parity condition is created when the FBN / DFBN is executed (causing a parity
interrupt).

The DCSB instruction performs similarly to the stwcx instruction except that it checks the two bits of the
evenly addressed EA. If the bits are both 0, then the store occurs otherwise the store fails and an
interrupt is generated.

68

6.1.2 Instruction Set Issues
The PU floating point format is a 32 bit, signed magnitude, biased exponent, much like the IEEE-754
formats. The IEEE-754 64 bit double precision format will easily contain the PU format, allowing floating
point operations to be performed by the COTS hardware, with the emulation software performing
translation between the formats and detecting PU floating point underflow and overflow conditions.

The PU provides Store Lockout functions for the VS that prevent the PU from writing to designated areas
of the VS and for generating an interrupt if such an access is attempted. This feature can be emulated by
using the hardware paging mechanisms of the COTS processor.

6.1.3 Basic Operating System (BOS) Issues
The primary purpose of BOS is to provide a debugging environment for tactical software integration. BOS
is not an operating system per se, but a set of utilities that allow the loading, debugging, and integration of
the tactical software with TOS. In the controlled environment of the TRW emulator and associated
VIEWstation support tools, the need for BOS would be greatly diminished.

The parts of BOS that would be supplanted by the emulator / VIEWstation would be the modules Main
Control, Loader, I/O Manager, Man Machine, Debug, and Utility Programs.

Darts, Error Control, and Overlay Manager would be retained to support TOS. These modules interface
with both TOS and CLC Control and bridge between them.

6.1.4 Tactical Operating System (TOS) Issues
The Tactical Operating System provides the real-time multi-processor environment for the tactical
software. TOS, however is not a pre-emptive multi-tasking OS. Threads are entered and run to
completion, at which time the processor looks for a new thread to run. The multi-tasking in the system
comes from having multiple processors, the more processors, the more threads that execute concurrently.
 The Fetch and Bias Negative and Double Conditional Store instructions provide the basis of the mutual
exclusion that allows the processors to safely locate and run threads without interfering with one another.

The current IULS emulator makes use of Wind River’s VxWorks both as the real time environment and the
development environment. VxWorks also provides SMP capabilities with the VxMP package. Parts of TOS
(and BOS) can make use of VxWorks features, especially the SMP semaphores, for emulating the Fetch
and Bias Negative and Double Conditional Store instructions.

The scheduling features of TOS have no direct counterparts in any COTS OS, and so while it desirable
that some parts of TOS be converted to make use of the scheduling features of a COTS OS, it is unlikely
that TOS can be replaced one-to-one with COTS OS.

6.1.5 Conclusions Regarding IULS Emulation of PARCS
Application of the IULS emulation tool to the PARCS domain is a feasible approach to addressing
hardware obsolescence. The end product of an emulation effort would be the current PARCS CLC object
code operating in a new COTS based (PowerPC) hardware architecture. Any deficiencies regarding the
robustness, maintainability and upgradeability of the PARCS software (see section 3.2) would not be
redressed by this approach. Tasks involved in emulating the PARCS CLC would include: Adaptation of the
IULS 1750A emulator to the SNX360 Instruction Set Architecture (ISA); Validation of the adapted emulator,
Development and validation of a set of hardware device driver emulations; Replacement or conversion of
the BOS and TOS; Complete validation of emulated PARCS functionality. Although detailed cost estimates
were not in the scope of this study, it is obvious that any meaningful effort in this area is well beyond the
resources available under IEIST funding.

6.2 PARCS System Assessment
An integral element of the IULS Wrapper Development Process is execution of a cost effectiveness
analysis of the proposed incremental upgrade. In support of this, a system assessment of PARCS was
performed. In this phase of the analysis, PARCS documentation was reviewed with an eye toward
robustness, maintainability and expandability of the system software. The viability of PARCS as a node in
the National Missile Defense (NMD) infrastructure and an element in the Radar Architecture Migration

69

Program (RAMP) was assessed. Approaches to upgrading PARCS using the IULS tool-set, to
incrementally integrate PARCS into RAMP, were also explored. The results of this portion of the analysis
are presented in the following subsections.

Section 6.2.1 deals with the robustness of the PARCS system. Upon review, it was discovered that
numerous issues, over and above hardware obsolescence, face PARCS. The software is unmaintainable
and needs to be re-written and/or the system needs to be re-architected. These discoveries obviate the
initial indication that emulation is the preferred methodology. The preferred approach to PARCS, assuming
sufficient need exist to justify the requisite funding, is to integrate PARCS into the Radar Architecture
Migration Program (RAMP).

Section 6.2.2 presents a top-level description of the BMEWS/PAVE PAWS and COBRA DANE systems.
The materials in this section are taken from the RAMP study and include discussion of using
BMEWS/PAVE PAWS and/or COBRA DANE as baselines in development of the Upgraded Early Warning
Radar System (UEWR). Section 6.2.3 discusses the RAMP process and provides insight into the
recommended UEWR architecture. It also discusses efforts required to include PARCS in RAMP including
possible use of IULS tools in the process. Section 6.2.4 captures the results of discussions with Boeing
NMD personnel regarding potential contributions by an upgraded PARCS to the NMD architecture.

6.2.1 PARCS System Robustness
Reference materials were reviewed to understand the details of the PARCS system and to gain an
understanding of the robustness of the PARCS software system. In particular, the 1995 study of PARCS
software maintainability was of great use. It is a very thorough study performed by PRC. It reported that:

• The original maintenance environment was abandoned. There exists no capability to re-compile

the system;
• As of 1995 3554 patches have been applied to system representing 95,899 LOC, 777 out of 1150

modules patched , 20 or more changes to 33 different modules, 92 changes to one;
• Configuration management has been lost. A completely known baseline does not exist. Source

code files do not exist, only listings which may not match executing code in all instances;
• Issue over size of the current satellite database. Variable Store memory unit 14 can only hold

8329 objects -- insufficient for current mission.
• The up-to-date documentation for a given CLC module is represented by a collection of original

specifications or manuals for the module, plus each and every Version Release Package affecting the
module since its last re-compile;

• There is no single updated version of each document … and no assurance at this time that the
collection of document changes accurately and completely represent the operational code;

• There is a wide variety in the quality of patch documentation;
• Currently four personnel (as of 1995) are familiar with the system - well below minimum. Only one

system engineer remains and is expected to retire.

Interestingly, at the time of this report, hardware obsolescence was not considered a problem.

The report included numerous short, intermediate and long-term recommendations for correction of the
observed deficiencies. Discussions with personnel at PARCS and at Peterson AFB indicate that none of
the recommendations have been executed. Therefore the current situation is that all problems specified in
the 1995 report still exist, and hardware obsolescence is now a problem. This means that to incrementally
produce a maintainable system, all of the short and intermediate terms recommendations must be
executed along with the development and integration of a new COTS based system architecture,
adaptation of the IULS emulator to the current PARCS ISA, execution of the incremental upgrade and
complete re-validation of the system.

This represents a massive undertaking and would result in a one-of-a-kind system, written in CENTRAN
and executing functionality, which was developed in the early seventies. Clearly, if PARCS is to be
upgraded, it must be in accordance with the long-term recommendation. To this end an assessment of
inclusion of PARCS in RAMP was executed as part of the domain analysis. The following subsections
capture the results of this analysis.

70

6.2.2 BMEWS/PAVE PAWS and COBRA DANE Analyses
One approach to upgrading of PARCS is to build upon the commonality between various Early Warning
Radar (EWR) sites to develop a new system baseline for PARCS. The BMEWS/PAVE PAWS and
COBRA DANE systems were analyzed for applicability to the PARCS problems. The analysis indicated
that COBRA DANE offered great synergy with PARCS and that a PARCS re-architecture should rely
considerably upon COBRA DANE technology.

COBRA DANE’s primary mission is to collect intelligence data on Soviet ballistic missile test during the
exoatmospheric portion of their trajectories. This mission, called Intelligence, consists of collection of
precise, multi-object radar measurements on Soviet missile weapons system development and operational
flights to the Kamchatka Peninsula and Northern Pacific Ocean, retrograde launches from the Pacific
Missile Fleet complex, and other ballistic missile trajectories within the radar’s coverage volume. The data
collected is used to generate quick-look messages and determine the missile complex trajectory and type,
the type of each object in the complex (e.g., tank, re-entry vehicle, fragment, etc.), the relative position of
objects in the complex, motion such as spin rate, and the constructed image of selected objects.

A corollary mission is to perform ballistic missile early warning. A surveillance fence to detect ballistic
missiles in flight over the COBRA DANE azimuth coverage is continuously erected. This fence coverage
overlaps that of another radar system in Clear, Alaska and can be used either as a backup sensor or to
provide enhanced warning information. When an earth impacting missile is detected, the system
automatically issues launch and predicted impact messages to the Space Defense Operations Center
while continuing surveillance for additional missiles. The system reports object number, launch point,
impact point, time for all earth-impacting objects, and other early warning information.

Space Surveillance or Spacetrack, is the system’s secondary mission. COBRA DANE augments the USAF
Space Surveillance system by providing satellite metric and signature data. To perform the mission,
COBRA DANE maintains a catalog of all known Earth Satellite Vehicles (ESVs) which is updated via
communication lines to Space Command. The system automatically accepts tasks for metric and Space
Object Identification (SOI) signature from Space Command and makes automatic adjustments to the
Orbital Element Set (OES) n the catalog based on the metric data. COBRA DANE erects space
surveillance fences, which detect ESVs in a designated volume of space. Any ESV detected, which does
not correlate with the catalog, is automatically tracked. The data include detection of New Foreign
Launches (NFLs) within the coverage area.

While the COBRA DANE is not considered a primary early warning radar (EWR) sensor, it provides the
basic capabilities of an EWR. COBRA DANE was recently upgraded and modernized via the COBRA
DANE Modernization System (CDSM) program. Since the current COBRA DANE provides the basic EWR
capabilities and is a relatively modern system, it is a prime candidate for use in the UEWR architecture.

The analysis conducted indicated that the primary feature of the CDSM system architecture that is most
applicable to the Upgraded Early Warning Radar (UEWR) architecture is the overall distributed processing
architecture. The particular partitioning of processing functions across multiple nodes can provide the
basis for a robust, expandable architecture for the UEWR. The processors for each type of processing
node can be selected / sized to meet the specific needs of the function performed by the node independent
of the other nodes. Additionally each node type can be upgraded individually without impacting the other
nodes. Though the overall system architecture is a strong candidate for reuse in the UEWR, the specific
hardware components used to implement the CDSM system architecture are not candidates for reuse.
Ideally, use of the current CDSM hardware and COTS components would provide for the least software
breakage possible. However, by retaining the same basic overall CDSM distributed processing
architecture, the breakage to the CDSM software could be reduced as the primary effort would be porting
of the software to the new processing equipment. Significant changes to the overall system architecture
would result in potentially much larger software breakage. The analysis included a detailed analysis of the
CDSM software and its potential for reuse in implementation of the UEWR.

71

6.2.3 Radar Architecture Migration Program
The Air Force has been conducting a program for the upgrade of the Early Warning Systems (EWS)
known as the Radar Architecture Migration Program (RAMP). RAMP focuses on PAVE PAWS, Ballistic
Missile Early Warning Systems (BMEWS) I &III and COBRA DANE. RAMP does not specifically address
PARCS, however, the methodology used in RAMP is an effective tool for analyzing hardware and software
upgrade strategies, and the system architecture that will result from RAMP provides the optimum basis for
developing a new PARCS system. Portions of RAMP will be directly applicable to PARCS while other
PARCS unique functionality will be encapsulated into objects designed for compatibility with the RAMP
architecture.

The overall goals of RAMP are to reuse existing legacy radar systems software and to provide a common
architecture to assure future interoperability and affordable enhancements. IULS techniques offer
approaches for retaining the functionality of PARCS and for assuring interoperability with the RAM
architecture. The main processing element of the PARCS system is a symmetric multi-processing set of
embedded computers called the Central Logic and Control processors. These processors are identical
Harvard architecture machines (separate program and data store memories) that each executes a
scheduled, non-interruptible processing thread in parallel with the other CLC processors. These threads
are obtained from a common process queue and are scheduled by a distributed Tactical Operating System
(TOS).

The IULS toolset can be used to emulate this SMP architecture through the use of a multi-processor
PowerPC single board computer which is itself capable of symmetric multi-processing. The following
figure illustrates the configuration of a quad PowerPC single board computer, each of which is configured
with an IULS emulator CLC Dual Instruction Set Computer (DISC) emulator executing on it. The IULS
emulator CLC DISC would execute not only the legacy CLC processing threads, but the underlying TOS
binary code as well. I/O mapping emulation software would interface to a new set of peripherals (disks,
tapes, printers, etc.), user display consoles (X-Windows UNIX workstations or WindowsNT PCs), and to
VME based radar sensor I/O interfaces.

L2 Cache
(Program Store)

PowerPC
(CLC Emulator)

L2 Cache
(Program Store)

PowerPC
(CLC Emulator)

L2 Cache
(Program Store)

PCI
Bridge

PowerPC
(CLC Emulator)

L2 Cache
(Program Store)

PowerPC
(CLC Emulator)

Local SDRAM
(Variable Store)

Process
Thread

ISA Eng.

IO
 M

ap

VCE

LVM

Peripherals,
User Consoles,

&
Radar Sensor

IO

Figure 55. IULS Emulation of PARCS SMP Architecture

72

Under RAM, component-based modeling is used to define the interfaces between the various components
that make up the radar systems and then integrating existing components to the maximum extent possible.
 The goal is to find a large number of existing components that can be inserted into a common architecture
under a set of common APIs. The approach for integrating PARCS into RAM requires developing an
approach for re-using existing components of PARCS. To put it another way, how can PARCS
functionality be wrapped to conform to the RAM APIs.

Two approaches for this integration suggest themselves from the architecture of the PARCS symmetric
multi-processing (SMP) architecture. The first would be integration at the input/output (IO) layers of the
architecture, essentially keeping all of the PARCS data processing intact and operating as a unified whole
within the confines of the IULS emulation of the Central Logic and Control (CLC) processors embedded in
the PARCS system. The second approach would be the interfacing of individual processing threads within
the CLC to other reusable components that have been or will be developed for other RAM applications.

It should be noted that these two approaches are not mutually exclusive. That is, the bulk of the PARCS
functionality could be integrated into the RAM architecture with some of the internal process threads
replaced by reusable components from other systems encompassed by RAM. The IO wrapped approach
lends itself to fairly easy segregation of PARCS processing algorithms from IO presentation to the user.
This would make its implementation fairly straightforward with minimal knowledge of the legacy application
code required and thereby lowering the technical risk. On the other hand, the integration with RAM would
be at a fairly coarse level with little benefit from RAM reusable components. The second approach
requires more domain knowledge of the PARCS applications code and more careful design of the
wrappers to the IULS emulator execution thunks. This increases the technical risk but brings with it the
potential for greater use of RAM reusable components.

The IULS emulator capability of “thunking” would provide the “glue” needed to interface the legacy
software with the new UEWR interfaces and to disable sections of the legacy code that have been
replaced with the off the shelf components. Both of these processes could occur incrementally. Figure 52
shows how IULS emulator “thunks” could be used incorporate PARCS legacy code into the RAM Technical
Reference Architecture (TRM) COE compliant architecture.

73

EEI

Support Applications
Multi-
Media

Information
InterchangeCommunications Users

Business
Processing

Communi-
cations

Environment
Management

Database
Utilities

Engineering
Support

Application Platform

Software
Engineering

Services

User
Interface
Services

Data
Management

Services

Data
Interchange

Services

Graphics
Services

Communications
Services

API

"Mission Area" Applications

API

Internationalization
Services

Security
Services

Distributed
Computing
Services

System
Management

Services

Operating System Services

RePLACE Emulator

BOS/TOS/Apps

"Thunks"

COE Component
"Wrapper"

COE Component
"Wrapper"

COE Component
"Wrapper"

"MOM" Conforming
Interface

"MOM" Conforming
Interface

"MOM" Conforming
Interface

Figure 56. IULS Emulator and RAM TRM

The process of integrating PARCS functionality into the COE compliant RAM architecture could proceed in
phases.

In the first phase, the PARCS legacy code (both applications and operating system code) is treated as a
black box that executes unmodified within the IULS emulator on new COTS hardware. There are a minimal
number of thunks implemented to allow the mapping of the legacy peripheral hardware onto new COTS
peripheral hardware.

The second phase integrates PARCS legacy code to the external world via COE compliant mechanisms. In
this phase the legacy code is still treated as a black box component, but the COE external mechanisms
are implemented using thunks and COE compliant wrappers. In this phase the basic Message Oriented
Middleware (MOM) architecture and interfaces are implemented. These interfaces include those with the
COTS OS and the inter-process communications between COE components. The COE wrappers conform
to the COE established interfaces and, in conjunction with the thunks, move data to/from the legacy code
from/to the external interfaces.

In the third phase, portions of the legacy applications code threads are replaced with reusable COE
compliant software components. The legacy code is still treated as a black box, but the COE components
are treated as white box components. The COE components along with the COE wrappers and thunks for
COE capability that is to be retained within the legacy code allow data to be moved into/out of the legacy
applications threads. Thunks are also used to disable portions of specific legacy applications threads,
which are then replaced with reusable COE components. As an example, the ITW/AA messages, which
are the Ballistic Missile Warning Attack Assessment, are already supported by PARCS. The other
messages could be synthesized from the PARCS trackfile processing by the insertion of thunks that then
communicate with the COE components that transmit the data using the ADCCP protocol to the
appropriate sites.

In the fourth phase the entire PARCS legacy applications and operating system code is replaced with COE
compliant components, eliminating the need for the IULS emulator.

74

Integrating PARCS into the broader UEWR architecture requires more detailed analysis. A preliminary
analysis of this question is summarized in the following tables. It should be noted however, although
emulation offers promise for porting portions of the current object code to a new architecture, it does not
address any of the maintainability issues cited in the reference materials. In particular, the absence of a
source baseline for PARCS is not addressed, nor are issues associated with maintaining an obsolete
CENTRAN source language.

Key System Architecture Features Pros / Cons

Processing Architecture • Symmetrical Multi-Processor architecture allows
throughput increase simply by adding additional
processors.

• The TOS/BOS operating system architecture
requires much manual labor to break application
code into runable threads.

SAFEGUARD Processors • Will be insupportable in very near future
• Not DII COE compliant
• Not viable UEWR option

Radar Controller / Signal Processor • Dated equipment which will be become
insupportable in near future

• Difficult to add NMD processing requirements
• Not DII COE compliant

Operator Interface • Dated and insupportable technology
• Not DII COE compliant

External Communication Devices • Dated and insupportable equipment
Operating System • Proprietary OS supported only on SAFEGUARD

Processors
• Not DII COE compliant
• Not viable option

Table 13. PARCS System Architecture Analysis

75

Key Software Issues Pros / Cons

Support of UEWR and NMD
Requirements

• Provides the Early Warning and Space Surveillance
missions as is

• Operator Interface software modifications required

• Radar scheduling, commanding, and returns processing
modifications required

• Tracking algorithm modifications may be required

• Object typing and discrimination modifications required

Tasking Architecture • Basic tasking architecture is non-standard and requires
much manual preparation.

• Use of overlays must be removed

• Porting to alternative OS will cause much breakage in
applications and in preparation process.

• Modifications to top level architecture will be required
to support NMD and migration to MOM or CORBA
based architecture

Implementation in SNX/CENTRAN • No support of SNX/CENTRAN on modern platforms

• Reengineering to another language (e.g., Ada) will
require significant resources

OS Dependencies • Port to alternative OS will cause significant breakage

TTY and Card Reader based operator
interfaces

• Not DII COE compliant

• Use of DII COE compliant approach will result in high
breakage in operator interface software area

Management of disk based data via OS
file services

• Use of OS file services reduces interoperability and
flexibility

• Use of OS file services requires development of
application specific access code

• Use of OS file services for persistent data provides
ability to tailor for performance considerations

• Port to alternative OS will cause breakage in
applications.

Table 14. PARCS Software Architecture Analysis

6.2.4 PARCS and National Missile Defense
In February 2000, a preliminary presentation regarding the IULS PARCS domain analysis was provided to
personnel at the PARCS site. The briefing indicated that it did not appear that an incremental upgrade of
PARCS was cost effective and that it could not be initiated under IEIST funding. It was suggested that the
possibility of including PARCS in the National Missile Defense (NMD) infrastructure should be examined. In
response to this suggestion, a visit to Washington DC, to the Boeing NMD project was executed. It was
learned that PARCS is not presently included in the NMD architecture because inclusion of PARCS offers
no enhancement in NMD system effectiveness, which is measured by the percentage of incoming missile
threats, which are killed by NMD. In terms of early detection of in-coming missile threats, PARCS offers
no coverage which is not provided by another asset and PARCS detection of an incoming threat is not
sufficiently timely to enable successful engagement. However, it is possible to build a case for integrating
PARCS into the NMD architecture. Although PARCS offers no increase in system effectiveness, it does
offer an interim improvement in the Kill Assessment capability, until the time the Final SBIRS High satellite

76

is deployed (earliest 2008). Kill Assessment is not an NMD system requirement but is highly desired by
the NMD customer.

6.3 PARCS and IEIST
During March 2000 the status of the PARCS domain analysis was briefed to USSPACECOM personnel at
Peterson AFB. They were also told that incremental upgrade of PARCS would not be executed under
IEIST funding. At that time it was hoped that PARCS could be included as a node in the Joint Battlespace
Infosphere in one or more of the IEIST scenarios. During the aforementioned visit to the Boeing National
Missile Defense project, the potential for an IEIST NMD scenario was explored. The viability of including
the Perimeter Attack Characterization Radar System in the NMD architecture was also discussed. The
results of the meeting were not favorable in terms of identifying a candidate scenario. The primary
objectives regarding the IEIST scenario are: 1) integration of legacy embedded systems into the Joint
Battlespace Infosphere (JBI), 2) leveraging of IULS and related AFRL technologies and 3) building upon
the foundation scenario and architecture developed for WSOA/QuoTE. Based upon the information
exchange at the meeting, we did not believe that we could develop a credible NMD scenario, which
satisfies the primary IEIST objectives. NMD execution timelines are limited to very short duration (on the
orders of seconds) and extremely high system reliability because the NMD scenarios focus on weapons to
destroy in-coming ballistic missiles themselves, and not the launchers (which clearly do fit the IEIST
CONOPS). The consensus was that there is little or no potential fit between NMD and IEIST.

6.4 PARCS Summary
This IULS PARCS study was initiated to examine the feasibility of utilizing the IULS toolset to incrementally
upgrade PARCS to alleviate a hardware obsolescence problem. The analysis indicates that this could be
reasonably accomplished. However, part of the IULS upgrade process entails evaluation of the overall
cost effectiveness of the upgrade. The results here are not promising. Because of the obsolete and
unmaintainable nature of the PARCS software, incremental upgrade cannot be recommended.

An alternate approach of re-architecting PARCS under the RAMP program was examined. This approach
is viable and might be enhanced using IULS tools to assist in the process. We believe that emulation could
be applied to develop an interim product, but in the long-run maintainability issues need to be addressed.
Also, as we have indicated the selective use of code translator technology should be explored if a PARCS
upgrade program is initiated. It is believed that an IULS Technology Demonstration could be constructed
along these lines. It is suggested that an effort be undertaken to identify funding for this approach. A
starting point for generating the need could be the NMD interim Kill Assessment capability afforded by
PARCS. Certainly, continuation of its current space tracking function is an additional need for PARCS.

77

7 IULS CV-22 Transition
The objective of this on-going technology development is to demonstrate, extend, and transition IULS
toolset technology to the Air Force special operations variant of the V-22, denoted the CV-22. The
program began in July 2000. The current CV-22 system of the Special Operations Command (SOCOM)
includes an Advanced AYK-14 mission computer. Although not yet in full- scale production, the CV-22
faces problems including hardware obsolescence and limited growth potential. The CV-22 program
roadmap (following figure) identifies a major upgrade, Block 20, which will commence EMD in FY2002.

CV-22 Block Upgrade
Strategy

(post CV-22 PMR draft 1)

FY00 FY01 FY02 FY03 FY04 FY05 FY06 FY07 FY08 FY09 FY10 FY11

Block 0 EMD

Features
Multimode Radar
SIRFC
Wing Fuel
AVSS

4Block 0

6Block 10

9Block 10

9Block 20

9Block 20

9Block 30

4Block 30
Flt Director Improvements
CSEL
Link 16
FMU Improvements
MATT Text Messages
CARP
Offboard NBC Director

CAAP vice MMR
Turreted Gun (V22)
GCAWS (V22)
GANS/GATM =
 Cockpit Voice Rec - VADR
 TCAS

Full-up DIRCM Jam Turrets
EGI vice LWINS/MAGR (V22)
Addt’l SATCOM

Cockpit Hoist Control
Trp Cmdr SA Connections
DIRCM Processor & AAR-54
AVR-2A Laser Det
Second Fwd Firing Disp
Dual Digital Map
Relocate ALE-47 head/bus
EW Bus Controller Backup
Extendable Refueling
 Probe (V22)

Block 10 EMD

FE Display Pages
Airframe Provisions for:
 DIRCM
 2nd Fwd Firing Disp

Block 20 EMD

Block 30 EMD

lot 5

lot 6

lot 7

lot 8

lot 9

lot 10

lot 11

OPR: CV-22 SPO staff
Maj K. Cunningham

DSN 757-8087
Rev C: 19 Nov 99

NOTE: Block 10 as expected in EMD contract (about to be let)
Block 20 as planned/discussed in CV-22 PMR Nov 99
Block 30 is notional - for Evolutionary Acq planning

Figure 57. CV-22 Program Roadmap

One of the key components of Block 20 is the Common Avionics Architecture for Penetration (CAAP),
starting in the in the 2001 time frame. CAAP has three main objectives: 1) Reduce enemy ability to detect
incoming SOF penetration aircraft; 2) Fuse off-board and on-board data for enhanced situational
awareness; and 3) Create a common processing architecture for all future SOF aircraft. Features of the
CAAP program are illustrated in the following figure. The CV-22 will require significant additional
processing resources to accommodate requirements for new and expanded capabilities for terrain
following and situation awareness as identified for CAAP. The CV-22 program is supporting a detailed
trade study to identify potential technologies for meeting these processor requirements.

78

3

Improved Improved
TF / TA TF / TA

NavigationNavigation

Enhanced Enhanced
SituationalSituational
AwarenessAwareness

(ESA)(ESA)

Obstacle Obstacle
Avoidance/Avoidance/

Cable Cable
WarningWarning
(OA/CW)(OA/CW)

GlobalGlobal
Access,Access,

Navigation,&Navigation,&
SafetySafety

(GANS)(GANS)

Intel Broadcast ReceiverIntel Broadcast Receiver

OSAOSA
ProcessorProcessor

ColorColor
DisplaysDisplays

GPS

DigitalDigital
 Map Map

EW BusEW Bus

SMMUSMMU

USSOCOMUSSOCOM
FY00-05 POMFY00-05 POM

ESAESA
SoftwareSoftware

OA/CWOA/CW
SoftwareSoftware

GANSGANS
SoftwareSoftware

TF/TATF/TA
SoftwareSoftware

Display Display
GeneratorsGenerators

HSDBHSDB

O/S, DBM,O/S, DBM,
DTED,DTED,

A/C DataA/C Data

BLOSTD/GBLOSTD/G Special ReceiverSpecial Receiver

DTDDTD

OA/CWOA/CW
Sensor(s)Sensor(s)

GANSGANS
Data LinksData Links
& Radios& Radios

Figure 58. CAAP Program Elements

In this effort, IULS technology for automatic generation of wrapper software is being applied to investigate
migration of the CV-22 to a Commercial Off-The-Shelf processor (PowerPC) and incorporation of
prototype CAAP functionality. This effort includes development of a lab-quality COTS Replacement Box
(CRB) that incorporates significant and applicable components of CV-22 mission processing functionality,
and prototype CAAP functions for terrain following. The following figure depicts the CV-22 processor
architecture and CRB migration. Prototype CAAP processing to be "wrapped" into the mission processor
was selected from candidates including blended radar processing, data fusion, and enhanced situation
awareness. The Quiet Knight ATD, a precursor to CAAP, has demonstrated the feasibility and
effectiveness of CAAP technology, and provides a source of prototype CAAP software.

PowerPC Processor(s)

COTS Replacement Box (CRB)

Real-Time Object Request Broker

Prototype CAAP Functionality
• Terrain Following
• Blended Radar Processing
• Situation Awareness
• Fusion

Legacy
JASS OFP

Bold Stroke
Infrastructure

MIPS Processor

Advanced Mission Computer

RCM Operating System Program
(ROSP)

Ada Run-Time System (AdaRTS)

Legacy
JASS OFP

Legacy
Executive

IULS

W
rappers

Figure 59. CV-22 Processor Architecture and CRB Migration

The effort supports key avionics upgrade trade studies being considered by the CV-22 for transition to an
open system architecture by providing performance benchmarks and risk reduction. The effort includes
both re-host activities to transition to the COTS processor, and incorporation of prototype CAAP
functionality. The IULS toolset developed under the IULS program is being applied to support automatic
generation of wrapper software for the new functionality.

79

This IULS TD program has significant potential carry-forward technology for the CV-22 program. First, it
will provide essential data supporting the CV-22 open system trade study by wrapping and rehosting JASS
software to an open system-based CRB. Second, it will verify performance, generate benchmark data,
and establish CRB growth potential to support CV-22 requirements by conducting CV-22 integration tests
to validate migration to a COTS processor. Finally, it will provide advanced risk reduction for SOCOM /
CV-22 and demonstrate transitionability of the IULS technology by "wrapping" prototype CAAP
functionality.

The CV-22 IULS effort represents a variation of the "rehost" wrapper approach. This technique leverages
extensive software development activity by the V-22 program in generation of the JASS Ada 83 baseline,
and facilitates potential re-use of Quiet Knight and other potential CAAP functionality. The rehost effort
provides a migration of the OFP from the legacy advanced AYK/14 processor to an open Bold Stroke
configuration. In the CV-22 case, the legacy advanced AYK/14 processor does not have the growth
potential to meet the demanding processing requirements for CAAP. Wrappers are being constructed
around the re-hosted software, and around the prototype CAAP software. The following figure shows the
legacy system and the wrapped demonstration system.

VMEbus

AMC

Common
OFP Library

IULS
Framework

Library Single Card Processor

JASS
Applications

CAAP
Components /

Wrapper

Display
Driver

Display
Services

COTS Mission Processor

Reuse
Components

Wrapper
Components

RCM

Rehost
Wrapper

I/O Services

EXEC
Wrapper

Ethernet

Green Hills MULTI
Wind River Tornado
CV-22 Environment

PC
Workstation

JASS Avionics
Applications

RCM Operating
System Program

Ada Run Time
Environment

Upgrade/PIM
Wrapper

CAAP Component
Library
Wrapper

Components

Upgrade/PIM
Wrapper

Figure 60. Legacy and Demonstration System Architecture

The Boeing Company is pursuing a very similar 'rehost' approach on the F-15E production program. In that
case, F-15E flight software is being rehosted from the legacy Ada 83 software operating on the VHSIC
Central Computer to the Bold Stroke environment using Ada 95. This approach resulted from a
comprehensive trade study, which considered many different options for F-15E integration within Bold
Stroke environment. The following figure shows the options that were considered in the study. Option 4 -
Utilize Infrastructure Services - was selected for implementation. It provides rehosted Ada code on the
PowerPC and utilizes low-level Bold Stroke infrastructure services. Considerations that led to the selection
were: 1) Options 4 and 5 will minimize the cost of future SW enhancements and maintenance, by making it
easier to distribute the code and multi-thread the application; 2) Options 3, 4 and 5 will minimize the cost of
future H/W upgrades by insulating the user application from the underlying HW and operating system; and
3) Options 3,4, 5 provide a path for easier migration to a long term object oriented solution. The IULS CV-
22 program is able to directly utilize Ada bindings to the Bold Stroke infrastructure that were developed as

80

a direct result of this option. In addition, F-15E lessons learned on development of the new executive, use
of the infrastructure, and support for global I/O databases are being applied to the VC-22 TD program.

1 2 3 4 5
Rehost to

Bare
Machine

Utilize vxWorks
and CSS

Utilize Low-Level
Infrastructure

Services

Utilize
Infrastructure

Services

Utilize Avionics
Interface Layer

Approach Rehost Ada Rehost Ada Rehost Ada Rehost Ada Rehost Ada
Use Avionics Level
I/F AI

Exec Routine New Exec New Exec New Exec Use High Level
Infrastructure Exec

High Infra

Use of BS
Infrastructure
Services

Low Level Infra Low Level Infra Low Level Infra

Use of BS Core
Services

CSS CSS CSS CSS

Operating System vxWorks vxWorks vxWorks vxWorks
CPU Dy4 FFW Dy4 FFW Dy4 FFW Dy4 FFW Dy4 FFW
Logical Device
Interfaces

HW HW HW HW HW

Option

Figure 61. F-15E Options for Rehost

7.1 Foundation Programs
This element of the Incremental Upgrade of Legacy Systems demonstration program is based upon the
adaptation of the V-22 Osprey’s JASS Avionics Operational Flight Program (OFP). JASS is the embedded
avionics OFP that was designed and targeted for a custom built Advanced Mission Computer (AMC)
written entirely in the Ada-83 programming language. Components of the embedded operating system
components, provided by the computer manufacturer were written in Ada as well.

The development of the AMC and the operating system components were funded by the V-22 program
and the LAMPS Update program by Loral and Computing Devices International (currently known as
General Dynamics Information Systems). The JASS software application was designed as a single
Configuration Item (CI) integrating 13 functional areas. These areas include Aircraft Subsystems, Blade
Fold /Wing Stow, Central Integrated Checkout, Communications and Identification, Controls and Displays,
Electronic Warfare, Executive, Flight Director and Guidance, Mission Management, Multifunction Remote
Terminal Input Output, Navigation, and Tactical Sensors. The runtime system is based upon the Ada run-
time system that is included with the Rational Software VADS Ada Cross-Development System. The
runtime component provides a multitask, priority based, periodic operating system. Inter-task
communication is achieved by the use of mailboxes, allowing data and messages to be passed and
executed at the appropriate task priority.

This element of the IULS demonstration integrates portions of the JASS application software with CORBA-
compliant ORB software and a run-time system that is commercially available. The integration of these
software components then provides the foundation for the inclusion of additional avionics functionality that
can be integrated via an open system interface. The demonstration will also address the issues that
involve the use of multi-language implementations where the host application and the ORB interface will
utilize Ada and C++. Additional multi-language considerations will be determined during the assessment of
additional avionics functionality.

An early task in the transition effort was a trade to identify the JASS Functional Areas with the highest
relevance to CAAP. These are the best candidates for rehost to the Bold Stroke Architecture under the
IULS Transition effort. The following figure shows the initial component selection. It will be confirmed
through additional system analysis before the demonstration content is finalized.

81

Bold Stroke
Infrastructure MIL-STD-1553B

Aircraft Subsystems

Blade Fold/Wing Stow

Central Integrated
Checkout

Communications
and Identification

Controls and
Displays

Electronic
Warfare Executive

Flight Director
and Guidance

Mission Management

Multifunction Remote
Terminal Input Output

Navigation

Tactical Sensors

Recording

JASSJASS

Figure 62. Tech Demo Components Selected for CAAP Relevancy (Preliminary)

The following figure illustrates the architectural organization of the software that will result from the CV-22
TD program.

Hardware (CPU, Memory, I/O)
Board Support Package

Run Time Operating System
Infrastructure Services

CAAP
JASS

(Ada 83)

Figure 63. CV-22 Demonstration Software Architecture

7.2 IULS CV-22 Transition Benefits
The CV-22 IULS TD program provides extensive transition benefits to the CV-22 program. First, the IULS
TD program is demonstrating through execution of system level tests that the CRB incorporating the
rehosted / wrapped JASS software can successfully complete “red-lined” CV-22 test procedures. This
establishes the fidelity of the wrapping, and will provide a path that can affordably migrate the JASS OFP
from the legacy advanced AYK/14 to a much more powerful COTS Open System CPU. Moreover, this
effort demonstrates the use of software wrappers to enable incorporation of prototype CAAP functionality.
 This will further demonstrate the growth potential of the COTS system and enable generation of system
benchmarks including spare capacity. The TD program represents a major risk reduction for the CV-22
program as it looks to develop its future end-state software and hardware architecture in preparation for
planned Block upgrades. The benefits of the IULS CV-22 Transition are captured in the following figure.

82

Legacy
Processor

Sync

In

O
ut

Put Get

...11001100011101
0101010101010101
0010111010010011
0100010101001010
...

Legacy OFP
(Ada 83)

...11001100011101
0101010101010101
0010111010010011
01000101010010...

Upgrade
Processor

PowerPCAdv. AYK-14 (MIPS)

Tech Demo Outputs
• Proof of Concept for CV-22

Open System Architecture
Candidate

• Demonstrated Growth
Potential for CAAP
Function

• Upgrade to CV-22 with
Candidate CAAP S/W using
IULS Toolset to Auto Gen
Wrapper

• Wrapping legacy S/W
enables incremental
upgrades and incremental
re-qualification

IULS AutoWrapper

Legacy System Issues
• Limited / No Expandability
in current CPU to meet
SOCOM needs

• Proprietary processor and
system bus

PowerPC Processor

COTS Replacement Box (CRB)

Real-Time Object Request Broker

Candidate CAAP Functionality
• Terrain Following
• Blended Radar Processing
• Situation Awareness
• Fusion

Candidate
CAAP
S/W

Migrate to
Ada 95

Legacy
JASS OFP

Bold Stroke
Infrastructure

Figure 64. CV-22 Demonstration Outputs

83

8 Other Wrapper Applications and Upgrade Technology
This section will describe the application of software wrappers to other embedded systems and application
domains, and discuss related software technology that can be applied to the upgrade problem.

8.1 Other IULS Applications

8.1.1 Open Systems Architecture Wrappers
The IULS approach is currently being applied to reuse embedded software for the AFRL Weapon System
Open Architecture (WSOA) CRAD Project. The objective of the project is to prototype middleware and
application software to enable a weapon platform such an F-15 and a command and control C2) platform
such as an AWACS to exchange images and to collaboratively replan a mission efficiently via a Link 16
network. The project’s demonstration fighter node is F-15E1, the same vehicle and processor/OFP used
for the IULS OWS demonstration described in Section 5. The OFP did not have a JTIDS processing
function to support the project. A mature JTIDS function was available from the F-15 production OFP that
supported the operation of a Class II terminal, the Link-16 interface and cockpit display formats drivers.

As in the F-15 OWS case, the reusable JTIDS software did not match the host language (Ada83 vs. C++)
or architecture (hierarchical vs. OO). IULS methodology was used to perform a brief FODA that indicated
that a wrapper was feasible and the best way to provide the F-15 OFP with the JTIDS functionality. The
architecture of the OFP with wrapped JTIDS software is very similar to the OWS wrapper architecture
illustrated in Figure 17. The major differences are that the JTIDS components are larger and more self-
contained (the major data interfaces are internal PIMs between components), and they are all executed
only at a 20Hz rate. The software is at the “Design Wrapper” process step at the time of this writing.

In 1998, the use of IULS methodology was included in a Boeing (McDonnell Douglas) proposal to NASA to
upgrade the Space Shuttle’s avionics system. The Shuttle’s quad-redundant central computers have
obsolete processors and the OFPs are written in a unique, costly to maintain language called HAL. The
three approaches summarized in Section 3.1 were considered and variations were proposed. The
computers perform both mission and flight critical (inner-loop flight control) processing so the IULS tools
would have to be extended and their operations formally qualified for this domain by Honeywell. This task
is reasonable since Honeywell has another specialized tool in this family for flight control software, but it
would be out-of-scope for the IULS project. Due to programmatic issues including cost/schedule
constraints, NASA has not contracted an upgrade, and a new round of studies is currently in progress.

8.1.2 Wrappers For Scientific Computing
There is a large body of software written over the past 30 year that supports the engineering and scientific
community and is now becoming obsolete in terms of source and object language, host system
dependencies, and compatibility with new software systems including distributed processing. It is typically
written in early versions of FORTRAN running on dedicated mainframes or “minis” for one specialist user
and is rarely well documented.

The IULS project had a technical exchange with JPL staff members regarding the upgrading and reuse of
their optics analysis utility library. Their organization maintains a large library of similar applications and is
interesting in modernizing the software systems and making them more user-friendly. They had already
proposed and manually implemented wrappers for some applications, and they were intrigued by the
automated analysis and design capabilities of IULS. During the technical exchange, it was obvious that the
small interface size and uniqueness of each application would make the cost of analysis, modeling,
evaluation, and interface library-building with the IULS toolset unjustifiable. Their work can serve as a
model for upgrading this domain of software.

8.1.3 Wrappers For Business and Information System Applications
There is a huge body of software written over the same period for the business and financial community
employing a wide variety of architectures, languages, APIs, databases, and user interfaces. The most
common language is COBOL, and most common user access is dumb terminals and point of sale/entry
devices. The vision of most of the business world is “e-Business” that is being implemented in distributed,

84

heterogeneous processing and “Web-like” user interfaces. Upgrading and “Web-a-fying these systems is
currently a massive undertaking that uses wrappers/adapters to some extent.

The IULS team had several technical exchanges with the Boeing corporate data processing support group
that is responsible for this transformation within Boeing. We concluded that the IULS toolset was too
specialized (embedded, real-time) for this software domain although Honeywell conceptualized and
demonstrated how it could be extended for business applications, languages (including C++ and Java), and
interfaces. Major software and hardware manufactures (Oracle, Microsoft, Sun, IBM, etc.) now provide
this upgrade service with a wrapper approach as one of their techniques.

There is a growing body of academic research in classifying software architectures (notably at Carnegie
Mellon University), and then identifying techniques for resolving software component “packaging”
mismatches with wrappers, bridges, mediators, etc. [see Reference 3 in Section 10.1, Bibliography].
Wrappers are being implemented commercially for legacy data sources and database systems (as in
IBM’s Garlic project, [18]), and for systems interaction (brokers, agents, and protocols by Sun).

OO wrappers for DOD information systems were the subject of an Institute for Defense Analysis study for
the Defense Information Systems Agency in 1996. This work was described in the report Legacy System
Wrapping for DOD Information Systems Modernization [4]. Several migration strategies and guidelines
are described including SQL-to-Ada bindings for wrapping a database management system. A wrapper
generator, “Rapper”, was developed for a CIA database management system during a study by MITRE
Corporation that arrived at some of the same lessons learned as IULS [14].

8.2 Wrappers and Software Reuse

Since the IULS Project began in 1997, the software engineering discipline of reusable software has grown
and matured greatly. While the major thrust is designing for reuse and “product-line software
development”, much of the methodology can also be applied to software upgrades: domain analysis,
architectural patterns and modeling, and re-engineering or refactoring of existing software for reuse. The
Boeing Phantom Works OSA group has been a leader in reuse technology in the real-time embedded
object oriented software domain [23]. There are many technical papers and books, conferences, and
tutorials that describe software reuse technology in many software domains such as those by Ivar
Jacobsen [8].

8.3 Other Software Upgrade Approaches

Both DoD and the commercial world have developed upgrade techniques that are similar to IULS wrapper
approaches and/or share some of the same principles such as model-based re-engineering.

The first design activity of the “Rehost approach” typically consists of translation and/or recompilation of
the legacy software so it can be executed (re-used) on the upgraded processor inside a wrapper. Under
the Embedded Information System Re-Engineering (EISR) project for AFRL, Lockheed Martin is
developing an automation-assisted JOVIAL-to-C re-engineering capability that permits transformation of
both the software’s source language and architecture [12]. Automated JOVIAL-to-Ada translation was
used successfully by Boeing to rehost the C-17’s Mission Computer OFP to the COTS CIP processors for
the upgrade described in Section 6.6.3 [17]. And the list of target processors supported by the USAF’s
JOVIAL toolset has grown to include COTS processors [http://www.jovial.hill.af.mil].

A variation of the “Hybrid approach” employing a split processor chassis is being used in several upgrades.
Generally a new chassis is designed with sections for legacy modules and their backplane, and new
COTS-based modules and their backplane. A backplane bridge is designed to link the two sections
containing adapter software; additional wrappers are developed for the upgraded applications on the new
processor modules. For example, the new AV-8B “OSCAR” Weapon Processor contains COTS
processors on a VME backplane running re-engineered OFPs, and a section of legacy backplane housing
reused weapon interface modules that have no COTS equivalent (and would be too expensive to re-
engineer).

85

A variation of software-based legacy “Emulator approach” that was successfully demonstrated on IULS
and other programs, is the firmware or hardware-based emulator. For example, CPU Technologies has
produced a 1750 emulator “system-on-a-chip” that is being used to upgrade the F-16’s radar processor
[http://www.cputech.com].

The problem of inserting new and upgraded software into real-time software architectures in a safe and
reliable manner is addressed by the Simplex Architecture from the Software Engineering Institute [22]. It
provides for the dynamic alteration of active systems, as well as fault tolerance and support for
heterogeneous languages and processors in a real-time system. It has been demonstrated a number of
times and is well-documented [http://www.sei.cmu.edu/simplex].

Simplex is a key element of the Incremental Software Evolution for Real-Time Systems (INSERT) R&D
program that Lockheed Martin is conducting for AFRL. It has produced a “COTS-based solution for
building high-assurance applications”. The “replacement” applications are run on top of an INSERT
middleware layer that insulates (wraps) them from the underlying RTOS and processor hardware, and
provides virtual memory partitioning and communication via asynchronous messaging. The INSERT system
has been demonstrated in a rehost of F-16 AFTI JOVIAL weapon delivery software from a 1750
processor to a Pentium processor [1].

8.4 Upgrade Tools and Modeling
Two technologies that IULS employs have expanded and matured since IULS was proposed: Model-based
software development and a related area, auto-code generation.

HTC’s DOME and WrapidH are the practical foundation for the IULS methodology. Since IULS began, the
Unified Modeling Language (UML) has become the standard for object oriented software development, and
has successfully been implemented in software development systems such as Rational’s Rose
[http://www.rational.com]. The DOME notation toolset includes a subset of UML but WrapidH was not
revised to include it. UML is a viable alternative to modeling existing as well as new application software
and wrappers, but the model could not be the source for to the IULS Honeywell analysis and code
generation capabilities. However, automatic generation of code from UML models in several HOLs is the
goal of integrated tool vendors such as Rational [15].

Generic patterns are now commonly used for characterizing and designing software. The publication of
the Gamma patterns book [6] formally introduced a basic family. Among the most useful are the Façade,
Adapter, and Proxy structural patterns, and the Mediator behavioral pattern. More specialized interface
patterns are especially valuable to describe wrapper design such as the Wrapper Façade [19], whose
intent is to “encapsulate low-level, stand-alone functions with OO class interfaces”.

Another example of a pattern application to wrapper design is the interface between OO software and
entity or relational databases (RDBs) that are common in business systems. They can be built with
generic data interface components through a data object generalization pattern [10] that is a generalization
of the data conversion wrapper components designed for the F-15 OWS wrapper.

Several code analysis tools were examined early in the IULS project for their usefulness in characterizing
legacy software during domain analysis that may require reverse engineering if the product is not well
documented. The McCabe toolset [http://www.mccabe.com], and in particular, the “Battlemap” was found
to be a valuable way to visualize existing Ada and C software. An evaluation copy of the Xinotech toolset
[http://www.xinotech.com] was acquired and applied to some of the legacy F-15 code during the FODA
phase. Since the F-15 OFP was well known and documented, the tool’s output did not add much value.
However since that time, both toolsets have been enhanced and bundled with other tools. Xinotech is
promoted as a robust reengineering system and is being used successfully on the ESIR project that was
previously described. Another visualization/reverse-engineering toolset family that software reuse
designers have found useful is Understand for FORTRAN, Understand for Ada, and Understand for C from
Scientific Toolworks [http://scitools.com]. This type of analysis tool should be a part of the upgrade SEE
along with DoME and WrapidH.

There are a number of ongoing projects in industry and academia in the areas of tools and methodology for
software analysis, design, test, and documentation that could be applied to the upgrade process. For

86

example, DARPA/ITO under the Evolutionary Design of Complex Software (EDCS) program sponsored the
Capability Packaging for Avionics (CPAS) project at Northrop Grumman Corporation. CPAS integrated
EDCS technologies in three areas: Software understanding through visualization tools; incremental
analysis/test and certification tools; and architecture-driven design and composition tools. CPAS has been
applied to the B-2 avionics system software in preparation for incremental enhancement as well as ongoing
maintenance [http://www.northrop.com/cpas].

87

9 IULS Lessons Learned and Conclusion
This section summarizes some lessons learned during the project regarding software upgrades using
wrapper technology and the IULS methodology.

9.1 IULS Process
We found that following the wrapping process described in Section 3 does result in a reasonably well-
designed OFP for our F-15 applications, and several steps yielded lessons learned or are especially
noteworthy.

The most essential and time-consuming pre-design step was the characterization of the legacy software.
The older the software, the less likely that it has complete and/or accurate documentation including
comprehensive test cases. It is vital that a domain expert with tribal knowledge of the design and
operation be involved in the documentation of the data interfaces. Each interface parameter must be
analyzed and classified in minute detail as illustrated for the F-15 project in Section 4.3 and the data
mapping table in Appendix A. This table was in use until the final code corrections were made prior to
system integration. This task can be done more efficiently with the code parsing tools and re-engineering
tools mentioned earlier.

The wrapper control flow and top-level architecture were relatively easy to design because the wrapped
parts were modular and had straightforward execution dependencies. The wrapper designer has some
flexibility in this area, especially if unexecuted code and unused parameters can be left in the reused legacy
code after they are understood/documented.

Training on the IULS toolset and the RePLACE systems is required, even for experienced software
designers. Some experience with model-based software development is very helpful. Those doing the
detailed wrapper design and integration/test activities must be skilled in the wrapper language(s), and have
at least a working knowledge of the legacy/rehosted software language as well.

TRW’s RePLACE system is relatively independent of the IULS toolset. Integrating the two was out of
scope for the current project. The domain analysis and characterization process steps must be completed
no matter which “back end” wrapper design process is employed.

Although the wrapper approach has been validated for upgrades in many software domains, the IULS
toolset is currently targeted to the embedded mission processing domain. The characterization steps are
widely applicable, but the model library and code generation steps are currently applicable to embedded
Ada and C code. The IULS toolset is most valuable for wrappers with larger data interfaces yet with
similar patterns and constructs. This allows the exploitation of the component library, class structures and
autocoding.

9.2 Upgrade Programmatics
Once the technical aspects of an upgrade have been addressed, an even greater challenge is addressing
the programmatic issues starting with the decision to preserve, maintain and upgrade or rather redesign
the system. This challenge is described by Schneidewind for the IEEE [20], Ragland for the USAF [16],
and in the IULS Final Technical Report, Task 1. Total re-engineering has many advantages if it is
affordable, including an opportunity to take control and document (e.g., “re-baseline”) the design using
improved methodology and tools after long periods of “maintenance”.

There are much-improved software cost estimating tools available such as Price S
[http://www.pricesystems.com] to characterize partial redesign (with some reuse), designing a
replacement from current requirements, or total re-engineering from fundamental requirements. The cost
of the wrapper itself is characterized as “automated software development”. A valuable reference with
regard to re-engineering is the Software Reengineering Assessment Handbook from the DOD Joint Group
on Systems Engineering [JLC-HDBK-SRAH].

It is a fact-of-life in most software domains that near-term funding is much easier to acquire than long term
for a number of reasons. Maintenance and minor upgrades are generally less costly and produce

88

immediate, identifiable returns whereas larger, longer-term re-engineering efforts are more costly and
promise less quantifiable life-cycle savings. The IULS approach to upgrades falls somewhere in between.
 It is obvious from the IULS upgrade projects that the best opportunity to re-engineer for upgrade and
reuse is in conjunction with major functional or hardware upgrades. This is also the best context for
evaluating the use of an emulator wrapper. Life cycle costs must be analyzed and documented, including
the increasing cost of maintaining legacy requirements, documentation, and support software [21]. The
open systems upgrade planning process can be aided by lessons-learned from activities such as AVPLEX
which is a “Model for Avionics Upgrade Planning and Execution” [13].

One of the unstated goals of the project was to generalize the experiences and lessons-learned from the
case studies and demonstrations into an tool’s algorithm or set of rules to guide a program in choosing
between re-engineering and wrapped upgrades, and among the wrapper approaches. One of the lessons-
learned, however, was that this determination is typically complex and unique for every program because
of the factors addressed in the preceding sections. Whilst a "template" based approach to determining
upgrade strategies is a good first step to weigh options, our experience has shown that each program
must systematically do the technical analysis (including the pre-design phases of the wrapper process), the
life-cycle analysis (including cost models), and the programmatic factor analysis to determine their best
course of action.

Tech transition is achievable (and has been demonstrated on IULS) but requires proving the technology
performs, and performs in ways that were not necessarily intended at design. Tech transition to a risk
averse production program requires constant attention, and close collaboration and risk mitigation
strategies. The tech transition path for an organization that does not have an existing relationship to the
production program is difficult at best and at times nearly impossible. Even when the technology has
proven itself, production programs may remain skeptical and need to be coaxed into accepting potential
risky technology.

Finally, transition success can ultimately depend on factors totally independent of the technology value.
The demonstrated value of the wrapper toolset was less relevant to the F-15 program after their roadmap
changed to embrace an Ada rehost vice a C++ re-engineering.

9.3 Summary
The IULS project has produced a near turn-key system to facilitate incremental improvements to fielded
weapon system avionics using software wrappers. A Software User Manual is available that contains
wrapper guidelines and architectures, and describes the use of the WrapidH toolset. The F-15 OWS, C-
17 CCU, and CV-22 demonstrations described in the report are real-world examples of the application of
the IULS process..

The WrapidH toolset and current Wrapper Library are available from Boeing Phantom Works
[http://PhantomWorks.boeing.com] for installation and use on a PC/Windows Workstation. The Domain
Modeling Environment is also available from the project or can be downloaded directly (without cost) from
Honeywell [http://www.htc.honeywell.com/dome]. It is an extensible collection of integrated model editing,
meta-modeling, and analysis tools (including UML) supporting a model-based development approach to
system/software engineering in many software domains.

The specialized RePLACETM toolset for developing emulation-based embedded software wrappers was
developed for AFRL by TRW-Dayton and is currently being employed on a number of embedded software
upgrade projects as well as the C-17 CCU upgrade. It is available from TRW [http://www.trw.com].

The wrapper approach to incremental avionics upgrades and enhancements is intuitively appealing, and a
number of projects that have heard about IULS have, at least, included the concept in their upgrade trade
space. It is a valuable resource in the growing effort to deal with aging aerospace vehicles and their
avionics. And it is coincident with the development of upgrade and reuse technology in many other
software domains.

89

10 Notes

10.1 Bibliography
The following materials are additional sources of information that were referenced by [number] and/or
found useful by the IULS project.
1. Calloni, Ben, et.al., INSERT: A COTS-Based Solution For Building High-Assurance Applications,

paper presented to the 18th Digital Avionics Systems Conference, 24-29 October 1999.
2. Cook, David and Leslie Dupaix, A Gentle Introduction to Software Engineering, USAF Software

Technology Support Center, 1999.
3. DeLine, Robert, A Catalog of Techniques for Resolving Packaging Mismatch, ACM, January 1999.
4. Diskin, David, Legacy System Wrapping for DOD Information System Modernization, Institute for

Defense Analysis for the Defense Information System Agency, Joint Interoperability & Engineering
Organization, 1996.

5. Floyd, Jon and Phil Mastrolia, The DOD Generic Fighter: F-22’s Historical Foundation; paper
presented to the Seventh Annual Software Technology Conference, 14 April 1995.

6. Gamma, Eric, et.al., Design Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

7. Garnett, Lucy, Wrapping Objects, Journal of Object Oriented Programming, January 1997.
8. Jacobsen, Ivar, et.al., Software Reuse; Architecture, Process and Organization for Business

Success, Addison Wesley, 1997.
9. Kang, Kyo C., et al; Feature-Oriented Domain Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-

21, ESD-90-TR-222); Software Engineering Institute, Carnegie Mellon University, November 1990.
10. Kwon Il-Myoung, et.al., Building Generic Data Interface Components through a Data Object

Generalization Pattern, Journal of Object-Oriented Programming (JOOP), October 2000.
11. Laufmann, S. C., Toward Agent-Based Software Engineering for Information-dependent Enterprise

Applications, IEE Proceedings – Software Engineering, Vol. 144, No. 1, February 1997.
12. Littlejohn, Kenneth and Michael DelPrincipe, Embedded Information Systems Re-Engineering, paper

presented to the 18th Digital Avionics Systems Conference, 24-29 October 1999.
13. Logan, Lt Col Glen and Charles Hurst, AVPLEX, A Model for Avionics Upgrade Planning and

Execution, paper presented to the 18th Digital Avionics Systems Conference, 24-29 October 1999.
14. Mattox, David with Len Seligman and Ken Smith, Rapper: A Wrapper Generator With Linguistic

Knowledge, ACM, February 1999.
15. Mellor, Stephen, Automatic Code Generation from UML Models, one of series of articles in C++

Report, June 1999.
16. Ragland, Bryce and Michael Olsem; Maintain Legacy Software or Reengineer?, article in CrossTalk

Magazine, The Journal of Defense Software Engineering, April 1996.
17. Rhine, Keith, The C-17 Core Integrated Processor (CIP) Project, paper presented to the 16th Digital

Avionics Systems Conference, 5 November 1997.
18. Salzberg, Don’t Scrap It, Wrap It! A Wrapper Architecture For Legacy Data Sources, ACM SIGMOD

Digital Review, 1999.
19. Schmidt, Douglas, Wrapper Façade: A Structural Pattern for Encapsulated Functions within Classes,

C++ Report, February 1999.
20. Schneidewind, Norman and Christof Ebert, Preserve or Redesign Legacy Systems, IEEE Software

Journal, July/August 1998.
21. Schneidewind, Norman, Now To Evaluate Legacy System Maintenance, IEEE Software Journal,

July/August 1998.
22. Sha, Liu, Ragunathan Rajkumar, and Michael Gagliardi: Evolving Dependable Real-Time Systems;

Software Engineering Institute, Carnegie Mellon University, 1996.
23. Sharp, David, Containing and Facilitating Change Via Object Oriented Tailoring Techniques, paper

presented to the 12th Software Technology Conference, 30 April – 5 May 2000.

90

Acronyms and Abbreviations
ADCP Advanced Display Core Processor (F-15)
ADL Architecture Description Language
AFRL Air Force Research Lab
AIDS Aircraft Integrated Data System
AISF Avionics Integration Support Facility (C-17)
AL Assembly language
API Application Program Interface
APM, A/PDMC Avionics/Propulsion Data Management Computer (C-17)
ARINC Aeronautical Radio, Inc.
AVMUX Avionics multiplex bus
A/A Air-to-Air
A/G Air-to-Ground
BIF Built-In Function
BIT Built-In Test
BTOS Basic Operating System
CAAP Common Avionics Architecture for Penetration
CAU Cautions
CCU Communication Control Unit (C-17)
CFT Conformal fuel tanks (F-15)
CIP Core Integrated Processor (C-17)
CLC Central Logic and Control (PARCS)
CLD Critical Local Data
CNAV Common Navigation
COE Common Operating Environment
CNI Communication, Navigation, Identification
COFP Common OFP (Boeing IRAD project)
CONOPS Concept of Operations
CORBA Common Object Request Broker Architecture
COSA Communication Open System Architecture
COSSI Commercial Operations and Support Savings Initiative, Dual Use Applications Program
COTS Commercial Off-the-Shelf
CPM Computer Processor Module
CPS Cabin, Pressure Sensor (Controller)
CPU Central Processing Unit
CRAD Contracted Research and Development
CRB COTS Replacement Box (C-17)
CRT Cathode Ray Tube
CSC Computer Software Component
C/D Control and Display
DMA Direct Memory Access
DoME Domain Modeling Environment
DPM Data Processor Module
DSSSL Document Style Semantics and Specification Language
DTE Desktop Test Environment
EEC Engine, Electronic Control
EWS Early Warning System
EXEC Executive
FCC Flight Control Computer
FODA Feature-Oriented Domain Analysis
FTR Flight Test Recorder
GATM Global Air Traffic Management
GDIS General Dynamics Information Systems (formerly Control Data, “CDInt”),

[http://www.gd-is.com]
GP General Purpose (Processor)
GSE Ground Support Equipment
HOL High Order Language

91

HTC Honeywell Technology Center
HS Hamilton Standard
HSDB High Speed Data Bus
HUD Head-Up Display
H/W Hardware
IBIT Initiated BIT
IDEF Integrated Computer-Aided Manufacturing Definition Language
IEIST Insertion of Embedded Infosphere Support Technologies
IOM Input/Output Module (F-15)
IOP Input/Output Processor
IRMS Integrated Radio Management Systems (C-17)
ISA Instruction Set Architecture
I/O Input/Output
IULS Incremental Upgrade of Legacy Systems
JASS Joint Vertical Experimental Avionics System Software
LCD Liquid Crystal Display
LM Lockheed Martin
MDA McDonnell Douglas Aerospace (now Boeing)
MC Mission Computer
MCK/MCD Mission Control Keyboard/Display
MLP Memory Loader Program
MMU Memory Management Unit
MPDP Multi-Purpose Display Processor (F-15)
MSIP Multi-Stage Improvement Program (F-15)
MTA Boeing Military Transport Aircraft
MUX Multiplex Bus
NAV Navigation
NMD National Missile Defense
NVRAM Non-Volatile RAM
OFP Operational Flight Program
OO Object-Oriented
ORB Object Request Broker
OSCAR Open Systems Core Avionics Requirements
OTS Off-the-Shelf
OWS Overload Warning System (F-15)
O/S Operating System
PARCS Perimeter Attack Radar Characterization System
PIM Process Interface Message (F-15)
PML Performance Model Library
PROM Programmable Read-Only Memory
RAM Random Access Memory
RAMP Radar Architecture Migration Program
RCF Radio Control Function (C-17)
RePLACE Reconfigurable Processor for Legacy Avionics Code Execution (TRW)
RFP Request for Proposal
RISC Reduced Instruction Set Architecture
RTOS Real-Time Operating System
RTS Run-Time System or Software
SEE Software Engineering Environment
SEI Software Engineering Institute
SLOC Software Lines of Code
SMP Symmetrical Multi-Processing
SOF Special Operations Forces
SRAM Semiconductor (volatile) RAM
SUM Software User Manual
SUROM Start-Up Read Only Memory
S/W Software
TCAS Traffic Alert and Collision Avoidance Systems

92

TD Technology Demonstration
TOS Tactical Operating Systems
UML Unified Modeling Language
UFC Up Front Control
VCC VHSIC Central Computer (F-15)
VHDL VHSIC Hardware Description Language
VME Versa Module Eurocard
WACS Warning and Cautions System (C-17)
WSOA Weapon System Open Architecture
WSSTS Weapon System Software Technology Support

93

Glossary
Architecture - The high level packaging of functions and data to implement an application.
Architecture modeling - Mapping the domain model to a software architecture to solve domain

problems.
Context - The environment in which the software exists.
Context Analysis - Establishing the scope and environment of a domain, and identifying the external

conditions and interfaces, which cause variations.
Domain - A class of software that provides services for solving a similar set of problems (applications

or capabilities).
Domain Modeling - Identifying the common features/problems addressed by the software domain using

models. A domain model defines the functions, objects, data, and their relationships in the domain.
Feature - A prominent, distinctive characteristic or behavior.
Feature Oriented Domain Analysis - Aggregation and generalization to capture the commonality in

software applications using the process of context analysis, domain modeling, and architecture
modeling.

Patterns - Design patterns provide guidelines for applying the reference architecture and components to
different domains and contexts.

Reference architecture - Provides examples, which are used as a guideline or template for developing
the actual wrapper architecture for an upgrade.

Repository of components - A collection of components including primitive wrapper parts and execution
environments that can be picked up by the tool to construct an upgrade wrapper.

94

Appendix A. Overload Warning System / Common OFP Mapping Table

F-15 OWS PIM F-15 COFP
D_ADC_20HZ_INPUT_PIM MACH_NUMBER : Mach;

type Mach is new Real range -
20.0 .. 20.0;

A5ADP.h(57): const BQualityDouble& GetMach();
Ex. theA5ADP_Ptr->GetMach()
Returns reference to BqualityDouble – GetValue() returns
mach/double/dimensionless, IsValid() returns bool.

D_ADC_20HZ_INPUT_PIM LOCAL_ANGLE_OF_ATTACK
: Cockpit_Units;
type Cockpit_Units is new Real;

A5ADP.h(56): const BAnglePiOver2& GetLocalAngleOfAttack();
Ex. theA5ADP_Ptr_-> GetLocalAngleOfAttack().GetAngle()
Returns reference to BAnglePiOver2 –
BAglePiOver2 derived from class Bangles – GetAngle() returns
Local Angle Of Attack/double/radians limited to –Pi/2 to Pi/2.

D_ADC_20HZ_INPUT_PIM LOCAL_ANGLE_OF_ATTACK
_
VALID : Boolean;

A5ADP.h(56): const BAnglePiOver2& GetLocalAngleOfAttack();
Ex. theA5ADP_Ptr_-> GetLocalAngleOfAttack().IsValid()
Returns reference to BAnglePiOver2 –
BAglePiOver2 derived from class Bangles -- IsValid() returns bool

D_ADC_20HZ_INPUT_PIM BARO_CORRECTED_
PRESSURE_ALTITUDE : Feet;
type Feet is new Real;

A5ADP.h(123): const virtual BqualityDouble&
GetBaroCorrectedPressureAltitude();
Ex. theA5ADP_Ptr_-> GetBaroCorrectedPressureAltitude()
Returns reference to BqualityDouble – GetValue() returns Baro
Corrected Pressure Altitude/double/ft, IsValid() returns bool.

D_ADC_20HZ_INPUT_PIM TRUE_ANGLE_OF_ATTACK :
Elevation_Type;
subtype Elevation_Type is
Radians range -Pi / 2.0 .. Pi /
2.0;
type Radians is new Real range
-3.0 * Pi .. 3.0 * Pi;

A5ADP.h(64): const BAnglePiOver2& GetTrueAngleOfAttack();
Ex. theA5ADP_Ptr_-> GetTrueAngleOfAttack()
Returns reference to BAnglePiOver2 –
BAglePiOver2 derived from class Bangles – GetAngle() returns
True Angle Of Attack/double/radians limited to –Pi/2 to Pi/2,
IsValid() returns bool.

D_ADC_20HZ_INPUT_PIM PRESSURE_RATIO : Unitless;
type Unitless is new Real;

A5ADP.h(61): const BQualityDouble& GetPressureRatio();
Ex. theA5ADP_Ptr_-> GetPressureRatio()
Returns reference to BqualityDouble – GetValue() returns pressure
ratio/double/dimensionless, IsValid() returns bool.

D_AFCS_20HZ_INPUT_PIM MODE_DISCRETE_WORD

.SPIN_RECOVERY_DISPLAY :
Boolean;

A5AFCS.h(98): inline bool GetSpinRecoveryDisplay();
Ex. theA5AFCS_Ptr_-> GetSpinRecoveryDisplay()
Returns bool which can be used to populate the appropriate bit in
D_AFCS_20HZ_INPUT_PIM.PIM.MODE_DISCRETE_WORD.
SPIN.DISCOVERY.DISPLAY

D_AFCS_20HZ_INPUT_PIM MODE_DISCRETE_WORD
.LANDING_GEAR_HANDLE_
IS_UP : Boolean;

A5AFCS.h(76): inline bool GetLandingGearHandleIsUp();
Ex. theA5AFCS_Ptr_-> GetLandingGearHandleIsUp()
Returns bool which can be used to populate the appropriate bit in
D_AFCS_20HZ_INPUT_PIM.PIM. MODE_DISCRETE_WORD.
LANDING_GEAR_HANDLE_IS_UP

D_AFCS_20HZ_INPUT_PIM MODE_DISCRETE_WORD
.YAW_RATE_TONE_
PRIORITY : Boolean;

A5AFCS.h(110): inline bool GetYawRateTonePriority();
Ex. theA5AFCS_Ptr_-> GetYawRateTonePriority();
Returns bool which can be used to populate the appropriate bit in
D_AFCS_20HZ_INPUT_PIM.PIM. MODE_DISCRETE_WORD.
YAW_RATE_TONE_PRIORITY

D_AFCS_20HZ_INPUT_PIM R_H_STABILATOR_RAM_
POSITION : Degrees;
type Degrees is new Real
range -360.0 .. 360.0;

A5AFCS.h(92): const BQualityDouble&
GetRH_StabRamPosition();
Ex. theA5AFCS_Ptr_-> GetRH_StabRamPosition();
Returns reference to BqualityDouble – GetValue() returns RH
Stabilator RAM Position/double/radians.

D_AFCS_20HZ_INPUT_PIM RIGHT_STAB_MAIN_RAM_
POS_IS_VALID
D_OWS_20_HZ_LIB.perform_v
alidity_checks.ada
Validity_Word.Right_Stab_Mai
n_RAM_Pos_Is_Valid :
Boolean;

A5AFCS.h(93): A5AFCS.h(92): inline bool
GetRightStabMainRamPosIsValid();
Ex. theA5AFCS_Ptr_-> GetRightStabMainRamPosIsValid();
Returns bool to be used for
RIGHT_STAB_MAIN_RAM_POS_IS_VALID.

95

F-15 OWS PIM F-15 COFP
D_AFCS_20HZ_INPUT_PIM L_H_STABILATOR_RAM_

POSITION : Degrees;
type Degrees is new Real
range -360.0 .. 360.0;

A5AFCS.h(83): const BQualityDouble&
GetLH_StabRamPosition();
Ex. theA5AFCS_Ptr_-> GetLH_StabRamPosition();
Returns reference to BqualityDouble – GetValue() returns LH
Stabilator RAM Position/double/radians.

D_AFCS_20HZ_INPUT_PIM LEFT_STAB_MAIN_RAM_
POS_IS_VALID
D_OWS_20_HZ_LIB.perform_v
alidity_checks.ada
Validity_Word.Left_Stab_Main
_RAM_Pos_Is_Valid : Boolean;

A5AFCS.h(82): A5AFCS.h(92): inline bool
GetRightStabMainRamPosIsValid();
Ex. theA5AFCS_Ptr_-> GetLeftStabMainRamPosIsValid();
Returns bool to be used for
LEFT_STAB_MAIN_RAM_POS_IS_VALID.

D_AFCS_20HZ_INPUT_PIM ROLL_RATE :
Radians_Per_Sec;
type Radians_Per_Sec is new
Real;

A5AFCS.h(94): const BQualityDouble& GetRollRate();
Ex. theA5AFCS_Ptr_-> GetRollRate();
Returns reference to BqualityDouble – GetValue() returns Roll
Rate/double/radians/sec.

D_AFCS_20HZ_INPUT_PIM YAW_RATE :
Radians_Per_Sec;
type Radians_Per_Sec is new
Real;

A5AFCS.h(108): const BQualityDouble& GetYawRate();
Ex. theA5AFCS_Ptr_-> GetYawRate();
Returns reference to BqualityDouble – GetValue() returns Yaw
Rate/double/radians/sec.

D_AFCS_20HZ_INPUT_PIM VALIDITY_WORD.YAW_
RATE_IS_VALID : Boolean;

A5AFCS.h(109): bool GetYawRateIsValid();
Ex. theA5AFCS_Ptr_-> GetYawRateIsValid();
Returns bool to be used directly in D_AFCS_20HZ_INPUT_PIM.
VALIDITY_WORD.YAW_RATE_IS_VALID

D_AFCS_20HZ_INPUT_PIM VALIDITY_WORD.ROLL_
RATE_IS_VALID : Boolean;

A5AFCS.h(95): bool GetRollRateIsValid();
Ex. theA5AFCS_Ptr_-> GetRollRateIsValid();
Returns bool to be used directly in D_AFCS_20HZ_INPUT_PIM.
PIM.VALIDITY_WORD.ROLL_RATE_IS_VALID

D_AFCS_20HZ_INPUT_PIM LATERAL_STICK_FORCE :
Pounds range -20.0 .. 20.0;
type Pounds is new Real;

A5AFCS.h(79): const BQualityDouble& GetLateralStickForce();
Ex. theA5AFCS_Ptr_-> GetLateralStickForce();
Returns reference to BqualityDouble -- GetValue() returns lateral
stick force/double/lbs

D_AFCS_20HZ_INPUT_PIM LATERAL_STICK_FORCE_
IS_VALID : Boolean;

A5AFCS.h(80): bool GetLateralStickForceIsValid();
Ex. theA5AFCS_Ptr_-> GetLateralStickForceIsValid();
Returns bool to be used directly in
D_AFCS_20HZ_INPUT_PIM.PIM.
LATERAL_STICK_FORCE_IS_VALID

D_AIU_20HZ_INPUT_PIM NAV_POD_PRESENT :

Boolean;
TGT_POD_PRESENT :
Boolean;

A5AIU.h(427): const AIU_PodStatusType&
GetAIU2_PodStatus();
Ex. theA5AIU_Ptr_-> GetAIU2_PodStatus();
Returns reference to PodStatusType which is a structure defined
in A5AIU2_Types.h. PodStatusType-> NAV_podPresent is bool
which can be used to populate D_AIU_20HZ_INPUT_PIM.
PIM.NAV_POD_PRESENT and PodStatusType->
TGT_podPresent is bool which can be used to populate
D_AIU_20HZ_INPUT_PIM. PIM.TGT_POD_PRESENT

D_GEN_20HZ_UNPACK_PIM SAFED_OFF_WEIGHT_OFF_

WHEELS : Boolean;
A5WeightOffWheels.h(106): inline bool
GetWeightOffWheelsSafedOff();
Ex. theA5WOW_LD_Ptr_-> GetWeightOffWheelsSafedOff();
Returns bool to be used directly in
D_GEN_20HZ_UNPACK_PIM.
PIM.SAFED_OFF_WEIGHT_OFF_WHEELS

D_INS_20HZ_INPUT_PIM NORMAL_ACCELERATION :
Feet_Per_Sec_Squared;
type Feet_Per_Sec_Squared is
new Real;

A5INS.h(88): const BQualityDouble& GetNormalAcceleration()
Ex. theA5INS_Ptr_-> GetNormalAcceleration()
Returns reference to BqualityDouble – GetValue() returns Normal
Acceleration/double/ft/sec2.

D_INS_20HZ_INPUT_PIM ALIGN_STATUS
.GYROCOMPASS_ALIGN :
Boolean;

A5INS.h(67): const INS_AlignStatusType& GetAlignQuality();
Ex. theA5INS_Ptr_-> GetAlignQuality();
struct AlignStatusType. gyroCompassAlign is bool to be used for
ALIGN_STATUS.GYROCOMPASS_ALIGN

96

F-15 OWS PIM F-15 COFP
D_INS_20HZ_INPUT_PIM ALIGN_STATUS.STORED_

HEADING_ALIGN : Boolean;
A5INS.h(67): const INS_AlignStatusType& GetAlignQuality();
Ex. theA5INS_Ptr_-> GetAlignQuality();
struct AlignStatusType. storedHeadingAlign is bool to be used for
ALIGN_STATUS.STORED_HEADING_ALIGN

D_INS_20HZ_INPUT_PIM Inu_Status.POSITION_AND_
VELOCITY_VALID : Boolean;

A5INS.h(123): bool GetPositionAndVelocityValid();
Ex. theA5INS_Ptr_-> GetPositionAndVelocityValid();

D_INS_20HZ_INPUT_PIM Inu_Status.ATTITUDE_VALID :
Boolean;

A5INS.h(71): bool GetAttitudeValid();
Ex. theA5INS_Ptr_-> GetAttitudeValid();

D_INS_20HZ_INPUT_PIM Inu_Status.BARO_INERTIAL_A
LTITUDE_VALID

A5INS.h(73): bool GetBaroInertialAltitudeValid();
Ex. theA5INS_Ptr_-> GetBaroInertialAltitudeValid();

D_PACS_20HZ_INPUT_PIM NUC_TRNG_SELECTED :

Boolean;
A5UPACS.h(56): const A5UPACS_NucDataStructType&
GetA5UPACS_NucData();
Ex. theA5UPACS_Ptr_-> GetA5UPACS_NucData();
Returns reference to A5UPACS_NucDataStructType.
NucTrainingSelected is bool which can be used directly for
D_PACS_20HZ_INPUT_PIM.PIM. NUC_TRNG_SELECTED.

97

Appendix B. Overload Warning System Parameter Stubbing Table

F-15 OWS PIM F-15 COFP
D_GEN_10HZ_UNPACK_PIM BRU_STATION_WEIGHT :

D_Ows_Types.Sta_2_8_5_Array_Type;
type Sta_2_8_5_Array_Type is array
(Sta_2_8_5_L_R_Type range Sta_2 .. Sta_5) of
U_Basic_Data_Types.Pounds;
type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);
type Pounds is new Real;

Not available in demo configuration –
Use PACS training Capability
If (A5UPACS_Station.stations[STA_X]
.merPresent) Stub to
BRU_STATION_WEIGHT(STA-X) = 0
lbs, else
BRU_STATION_WEIGHT(STA-X) =
524.0 lbs for X=2,5,8

D_GEN_10HZ_UNPACK_PIM CFT_STATUS_FLAG : Cft_Type;
type Cft_Type is (None, Cft_4, Cft_3);

Not available in demo configuration –
Stub to CFT_STATUS_FLAG = CFT_4.

D_GEN_10HZ_UNPACK_PIM AG_WEAPON_COUNT :
D_Ows_Types.Ag_Weapon_Count_Array_Type;
type Ag_Weapon_Count_Array_Type is
array (Sta_2_8_5_L_R_Type) of
U_Number_Types.Integer_Short;
type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);
type Integer_Short is range -32768 .. 32767;

Not available in demo configuration –
Use PACS training Capability
Stub to
AG_WEAPON_COUNT(STA_X) =
A5UPACS_Stations.stations[STA_X]
.wpnCount for X=2,5,8

D_GEN_10HZ_UNPACK_PIM LAUNCHER_WEIGHT :
D_Ows_Types.Sta_2_8_Array_Type;
type Sta_2_8_Array_Type is array
(Sta_2_8_5_L_R_Type range Sta_2 .. Sta_8) of
U_Basic_Data_Types.Pounds;
type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);
type Pounds is new Real;

Not available in demo configuration –
Stub to LAUNCHER_WEIGHT(STA_2)
= LAUNCHER_WEIGHT(STA_8) = 0
lbs. Note
LAUNCHER_WEIGHT(STA_5) is not
defined.

D_GEN_10HZ_UNPACK_PIM PYLON_WEIGHT :
D_Ows_Types.Sta_2_8_5_Array_Type;
Type Sta_2_8_5_Array_Type is array
(Sta_2_8_5_L_R_Type range Sta_2 .. Sta_5) of
U_Basic_Data_Types.Pounds;
Type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);
Type Pounds is new Real;

Not available in demo configuration –
Use PACS training Capability
If (theA5UPACS_ptr-
>GetPylonPresentSta2()) Stub to
PYLON_WEIGHT(STA_2) = 500.0;
Else PYLON_WEIGHT(STA_2) =0.0;
if (theA5UPACS_ptr-
>GetPylonPresentSta5()) Stub to
PYLON_WEIGHT(STA_5) = 300.0;
Else PYLON_WEIGHT(STA_5) =0.0;
if (theA5UPACS_ptr-
>GetPylonPresentSta8()) Stub to
PYLON_WEIGHT(STA_8) = 500.0;
Else PYLON_WEIGHT(STA_8) =0.0;

98

F-15 OWS PIM F-15 COFP
D_GEN_10HZ_UNPACK_PIM AG_STATION_ID_CODE :

D_Ows_Types.Ag_Station_Id_Code_Array_Type;
type Ag_Station_Id_Code_Array_Type is array
(Sta_2_8_5_L_R_Type) of
U_Pacs_Types.Ag_Store_Type;
Type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);
type Ag_Store_Type is (None, Mk_82, Mk_82Se, Mc_1,
Mk_84, Mk_82Ar, Mk_84Ar, Bdu_33, Cbu_52, Cbu_58,
Cbu_71, Cbu_87, Cbu_89, Cbu_97, Spare_14,
Spare_15, Suu_20, Suu_20M, Suu_20N, Mk_20,
Agm_65A, Agm_65B, Agm_65D, Agm_65G, Gbu_15S,
Gbu_10A, Gbu_10M, Gbu_12B, Gbu_12C, Gbu_15L,
Tgbu_15, Gbu_24, Axq_14, Unknown, Mxu_648, Idlp,
Fuel, Spare_37, Alq_119, Alq_131, Blu_107, Gbu_10B,
Spare_42, Spare_43, Gbu_24A, Gbu_28, Agm_130A,
Agm_130C, Tgm_65A, Tgm_65B, Tgm_65D, Tgm_65G,
Spare_52, Spare_53, Spare_54, Spare_55, Spare_56,
Spare_57, Spare_58, Spare_59, Spare_60, Spare_61,
Spare_62, Spare_63, Spare_64, Spare_65, Spare_66,
Spare_67, Spare_68, Spare_69, Spare_70, Spare_71,
Spare_72, Spare_73, Spare_74, Spare_75, Spare_76,
Spare_77, Spare_78, Spare_79, Spare_80, Spare_81,
Spare_82, Spare_83, Spare_84, Spare_85, Spare_86,
Spare_87, Spare_88, Spare_89, Spare_90, Spare_91,
Spare_92, Spare_93, Spare_94, Spare_95, Spare_96,
Spare_97, Spare_98, B61_0, B61_10, B61_2, B61_3,
B61_4, B61_5);

Not available in demo configuration –
Use PACS training Capability
Stub to :
AG_STATION_ID_CODE(STA_X) =
A5UPACS_Stations.stations[STA_X]
.storeLoaded for X=2,5,8

D_GEN_10HZ_UNPACK_PIM AA_STA_2A_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to: 0 lbs

D_GEN_10HZ_UNPACK_PIM AA_STA_2B_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to: 0 lbs

D_GEN_10HZ_UNPACK_PIM AA_STA_8A_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to: 0 lbs

D_GEN_10HZ_UNPACK_PIM AA_STA_8B_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to: 0 lbs

D_GEN_10HZ_UNPACK_PIM AA_STA_3_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to: 0 lbs

D_GEN_10HZ_UNPACK_PIM AA_STA_4_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to: 0 lbs

D_GEN_10HZ_UNPACK_PIM AA_STA_6_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to: 0 lbs

D_GEN_10HZ_UNPACK_PIM AA_STA_7_MISSILE_WEIGHT_FLAG :
U_Basic_Data_Types.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to: 0 lbs

D_GEN_10HZ_UNPACK_PIM TANK_PRESENT : D_Ows_Types.
Tank_Present_Array_Type;
type Tank_Present_Array_Type is
array (Sta_2_8_5_L_R_Type range Sta_2 .. Sta_5) of
Boolean;
type Sta_2_8_5_L_R_Type is (Sta_2, Sta_8, Sta_5, Lcft,
Rcft);

Not available in demo configuration –
Stub to TANK_PRESENT(STA_2) =
TANK_PRESENT(STA_8) =
TANK_PRESENT(STA_5) = False.

99

F-15 OWS PIM F-15 COFP
D_GEN_10HZ_UNPACK_PIM RIGHT_CFT_AG_WPN_IDENT_CODE :

U_Pacs_Types.Ag_Store_Type;
type Ag_Store_Type is (None, Mk_82, Mk_82Se, Mc_1,
Mk_84, Mk_82Ar, Mk_84Ar, Bdu_33, Cbu_52, Cbu_58,
Cbu_71, Cbu_87, Cbu_89, Cbu_9, Spare_14, Spare_15,
Suu_20, Suu_20M, Suu_20N, Mk_20, Agm_65A,
Agm_65B, Agm_65D, Agm_65G, Gbu_15S, Gbu_10A,
Gbu_10M, Gbu_12B, Gbu_12C, Gbu_15L, Tgbu_15,
Gbu_24, Axq_14, Unknown, Mxu_648, Idlp, Fuel,
Spare_37, Alq_119, Alq_131, Blu_107, Gbu_10B,
Spare_42, Spare_43, Gbu_24A, Gbu_28, Agm_130A,
Agm_130C, Tgm_65A, Tgm_65B, Tgm_65D, Tgm_65G,
Spare_52, Spare_53, Spare_54, Spare_55, Spare_56,
Spare_57, Spare_58, Spare_59, Spare_60, Spare_61,
Spare_62, Spare_63, Spare_64, Spare_65, Spare_66,
Spare_67, Spare_68, Spare_69, Spare_70, Spare_71,
Spare_72, Spare_73, Spare_74, Spare_75, Spare_76,
Spare_77, Spare_78, Spare_79, Spare_80, Spare_81,
Spare_82, Spare_83, Spare_84, Spare_85, Spare_86,
Spare_87, Spare_88, Spare_89, Spare_90, Spare_91,
Spare_92, Spare_93, Spare_94, Spare_95, Spare_96,
Spare_97, Spare_98, B61_0, B61_10, B61_2, B61_3,
B61_4, B61_5);

Not available in demo configuration –
Stub to
RIGHT_CFT_AG_WPN_IDENT_CODE
= NONE.

D_GEN_10HZ_UNPACK_PIM LEFT_CFT_AG_WPN_IDENT_CODE :
U_Pacs_Types.Ag_Store_Type;
type Ag_Store_Type is (None, Mk_82, Mk_82Se, Mc_1,
Mk_84, Mk_82Ar, Mk_84Ar, Bdu_33, Cbu_52, Cbu_58,
Cbu_71, Cbu_87, Cbu_89, Cbu_97, Spare_14,
Spare_15, Suu_20, Suu_20M, Suu_20N, Mk_20,
Agm_65A, Agm_65B, Agm_65D, Agm_65G, Gbu_15S,
Gbu_10A, Gbu_10M, Gbu_12B, Gbu_12C, Gbu_15L,
Tgbu_15, Gbu_24, Axq_14, Unknown, Mxu_648, Idlp,
Fuel, Spare_37, Alq_119, Alq_131, Blu_107, Gbu_10B,
Spare_42, Spare_43, Gbu_24A, Gbu_28, Agm_130A,
Agm_130C, Tgm_65A, Tgm_65B, Tgm_65D, Tgm_65G,
Spare_52, Spare_53, Spare_54, Spare_55, Spare_56,
Spare_57, Spare_58, Spare_59, Spare_60, Spare_61,
Spare_62, Spare_63, Spare_64, Spare_65, Spare_66,
Spare_67, Spare_68, Spare_69, Spare_70, Spare_71,
Spare_72, Spare_73, Spare_74, Spare_75, Spare_76,
Spare_77, Spare_78, Spare_79, Spare_80, Spare_81,
Spare_82, Spare_83, Spare_84, Spare_85, Spare_86,
Spare_87, Spare_88, Spare_89, Spare_90, Spare_91,
Spare_92, Spare_93, Spare_94, Spare_95, Spare_96,
Spare_97, Spare_98, B61_0, B61_10, B61_2, B61_3,
B61_4, B61_5);

Not available in demo configuration –
Stub to
LEFT_CFT_AG_WPN_IDENT_CODE
= NONE.

D_GEN_10HZ_UNPACK_PIM RIGHT_CFT_AG_WPN_COUNT_FLAG :
U_Common_Types.Three_Bits;
subtype Three_Bits is Integer_Short range 0 .. 7;
type Integer_Short is range -32768 .. 32767;

Not available in demo configuration –
Stub to
RIGHT_CFT_AG_WPN_COUNT_FLA
G = 0

D_GEN_10HZ_UNPACK_PIM LEFT_CFT_AG_WPN_COUNT_FLAG :
U_Common_Types.Three_Bits;
subtype Three_Bits is Integer_Short range 0 .. 7;
type Integer_Short is range -32768 .. 32767;

Not available in demo configuration –
Stub to
LEFT_CFT_AG_WPN_COUNT_FLAG
= 0

100

F-15 OWS PIM F-15 COFP
D_GEN_20HZ_UNPACK_PIM PACS_COMBAT_MODE_MISSILE_PRESENT :

Pacs_Combat_Mode_Missile_Present_Type;
type Pacs_Combat_Mode_Missile_Present_Type is
 array (U_Pacs_Types.Weapon_Sta_Type) of Boolean;
type Weapon_Sta_Type is (Sta_2A, Sta_2B, Sta_8A,
Sta_8B, Sta_3, Sta_4, Sta_6, Sta_7, Sta_2, Sta_8,
Sta_5);

Not available in demo configuration –
Stub to
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_2A) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_2B) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_8A) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_8B) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_3) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_4) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_6) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_7) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_2) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_8) =
PACS_COMBAT_MODE_MISSILE_P
RESENT(STA_5) = False.

D_GEN_20HZ_UNPACK_PIM ADC_INVALID_FLAG ADC : Boolean;
 will not be used!!!(ADP)

Not available in COSSI – Stub to
ADC_INVALID_FLAG=False

D_GEN_20HZ_UNPACK_PIM SPIKE_CHECK_DATA_IS_SPIKED :
Spike_Check_Data_Is_Spiked_Type;
type Spike_Check_Data_Is_Spiked_Type is
array (Spike_Parameter_Type) of Boolean;
type Spike_Parameter_Type is (True_Aoa, Local_Aoa,
Mach_Number, Pressure_Ratio,
Baro_Corr_Press_Altitude, Pressure_Altitude,
Normal_Acceleration);

Not available in COSSI – Stub to
SPIKE_CHECK_DATA_IS_SPIKED(T
RUE_AOA) =
SPIKE_CHECK_DATA_IS_SPIKED(L
OCAL_AOA) =
SPIKE_CHECK_DATA_IS_SPIKED(M
ACH_NUMBER) =
SPIKE_CHECK_DATA_IS_SPIKED(P
RESSURE_RATIO) =
SPIKE_CHECK_DATA_IS_SPIKED(B
ARO_CORR_PRESS_ALTITUDE) =
SPIKE_CHECK_DATA_IS_SPIKED(P
RESSURE_ALTITUDE) =
SPIKE_CHECK_DATA_IS_SPIKED(N
ORMAL_ACCELERATION) = False

D_HUD_CONTROL_PIM AOA_LIMIT.DISPLAYED_VALUE : Num.Integer_Short

range 20 .. 50;
type Integer_Short is range -32768 .. 32767;

Not available in demo configuration –
Stub to 50 cockpit units (Note stub is
short integer type) to ensure logic to
activate tone is not entered (tone
capability is not wired in airplane)

D_MPDP_20HZ_INPUT_PIM GRP_ACTIVE : Grp_Active_Array;

type Grp_Active_Array is array (Side_A_B) of
Mpdpt.Grp_Active_Type;
type Side_A_B is (Side_A, Side_B);
type Grp_Active_Type is array (Cmt.Du_Type) of
Boolean;
 for Grp_Active_Type'Size use 8;

Not available in demo configuration –
Stub GRP_ACTIVE(SIDE_B)(DU7) to
True

D_MPDP_20HZ_INPUT_PIM GRP_ASSIGNED_TO_BUS_B :
Grp_Assigned_To_Bus_B_Array;
type Grp_Assigned_To_Bus_B_Array is
 array (Side_A_B) of
Mpdpt.Grp_Assigned_To_Bus_B_Type;
type Side_A_B is (Side_A, Side_B);
type Grp_Assigned_To_Bus_B_Type is array
(Cmt.Du_Type) of Boolean;
 for Grp_Assigned_To_Bus_B_Type'Size use 8;

Not available in demo configuration –
Stub GRP_ASIGNED_TO_BUS_B
(SIDE_B)(DU7) to True

101

F-15 OWS PIM F-15 COFP
D_MPDP_20HZ_INPUT_PIM CAU_NORMAL_ACCELERATION : Bdt.G_Accel;

type G_Accel is new Real range -16.0 .. 16.0;
 -- Acceleration, gravities

Not available in demo configuration --
Use INS value as default.
A5INS.h(88): const BQualityDouble&
GetNormalAcceleration()
Ex. theA5INS_Ptr_->
GetNormalAcceleration()
Returns reference to BqualityDouble –
GetValue() returns Normal
Acceleration/double/ft/sec2. (Convert
from ft/sec2 to g’s for
CAU_NORMAL_ACCELERATION)
IsValid() returns bool.

D_MPDP_20HZ_INPUT_PIM LEFT_CFT_FUEL_WEIGHT : Bdt.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to 4524. lbs

D_MPDP_20HZ_INPUT_PIM RIGHT_CFT_FUEL_WEIGHT : Bdt.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to 4524. lbs

D_MPDP_20HZ_INPUT_PIM TOTAL_FUEL_WEIGHT : Bdt.Pounds;
type Pounds is new Real;

Not available in demo configuration –
Stub to 13300 lbs
If VALUE entered from scratch-pad,
TOTAL_FUEL_WEIGHT=VALUE*100
lbs limited 0 to 13300 lbs.

D_MPDP_20HZ_INPUT_PIM GP_ROTATING_BIT_PATTERN : Mpdpt.
Gp_Rotating_Bit_Pattern_Type;
type Gp_Rotating_Bit_Pattern_Type is (Frame_0,
Frame_1, Frame_2, Frame_3);

Not available in demo configuration –
Set GP_ROTATING_BIT_PATTERN =
FRAME_0,
FRAME_1,FRAME_2,FRAME_3 on a
rotating basis at 20 Hz.

D_MPDP_20HZ_INPUT_PIM OWS_RESET_SWITCH_DEPRESSED : Boolean; Not available in demo configuration –
Stub to False

D_PACS_20HZ_INPUT_PIM PACS_INOPERATIVE_RESET_BIT_FLAG : Boolean; Not available in demo configuration –

Stub to
PACS_INOPERATIVE_RESET_BIT_F
LAG = False

D_PACS_20HZ_INPUT_PIM UNKNOWN_WPN_WEIGHT_CLASS :
Pacst.Unknown_Wpn_Weight_Class_Type;
type Unknown_Wpn_Weight_Class_Type is (Ows_Off,
Class_1, Class_2, Class_3);

Not available in demo configuration –
Options are OWS_OFF, CLASS_1,
CLASS_2, CLASS_3. For demo stub
to OWS_OFF.

I_PACS_CMBT_TRNG_
BUFFER

MSG_06_WORD_10.NUC_TRNG_LOAD_RC :
U_Pacs_Types.Nuc_Training_Store;
type Nuc_Training_Store is (None, Spare_1, Suu_20,
Spare_2, Bdu_38);

Not available in demo configuration – It
is set equal to a
NUC_TRNG_LOAD_TYPE which is set
equal to an element from
NUC_TRAINING_STORE. Options for
NUC_TRAINING_STORE are NONE,
SPARE_1, SUU_20, SPARE_2 and
BDU_38. For demo, stub to NONE.

I_PACS_CMBT_TRNG_
BUFFER

MSG_06_WORD_08.NUC_TRNG_LOAD_LC
U_Pacs_Types.Nuc_Training_Store;
type Nuc_Training_Store is (None, Spare_1, Suu_20,
Spare_2, Bdu_38);

Not available in demo configuration – It
is set equal to a
NUC_TRNG_LOAD_TYPE which is set
equal to an element from
NUC_TRAINING_STORE. Options for
NUC_TRAINING_STORE are NONE,
SPARE_1, SUU_20, SPARE_2 and
BDU_38. For demo, stub to NONE.

X_EXECUTIVE_CONTROL FIRST_PASS_FOR_10_HZ : First_Pass_Flag_Type;

type First_Pass_Flag_Type is (Not_First_Pass,
Power_Up, Pilot_Reset, Reconfiguration);
(Note change of variable name from …10HZ to …10_HZ)

Not available in demo configuration –
Options are NOT_FIRST_PASS,
POWER_UP, PILOT_RESET and
RECONFIGURATION. Set to
POWER_UP for first execution of 10HZ
and 10HZ WARN, NOT_FIRST_PASS
for subsequent executions.

102

F-15 OWS PIM F-15 COFP
X_EXECUTIVE_CONTROL H2_PERIPHERAL_DATA_INVALID :

H9_Peripheral_Data_Invalid_Type;
type H9_Peripheral_Data_Invalid_Type is array
(H9_Peripheral_Type) of Boolean;
type H9_Peripheral_Type is (Dbiu, Adc, Ahrs, Spare_3,
Spare_4, Spare_5, Pacs, Spare_7, Sdrs, Spare_9,
Spare_10, Rwr, Spare_12, Spare_13, -- SPARE_13 is
reserved for AHRS problem workaround Si, Ics);

Not available in demo configuration? –
Stub to
X_EXECUTIVE_CONTROL.H2_DATA.
H2_PERIPHERAL_DATA_
INVALID(PACS) = False

X_EXECUTIVE_CONTROL DISP_20_HZ_PERIPHERAL_DATA_INVALID :
 Disp_Peripheral_Data_Invalid_Type;
type Disp_Peripheral_Data_Invalid_Type is
 array (Disp_Peripheral_Type) of Boolean;
type Disp_Peripheral_Type is (Reserved_0, Spare_1,
Spare_2, Spare_3, Spare_4, Spare_5, Spare_6,
Spare_7, Spare_8, Spare_9, Spare_10, Spare_11,
Spare_12, Spare_13, Spare_14, Spare_15, Mpdpa,
Mpdpb, Spare_18, Spare_19, Spare_20, Spare_21,
Spare_22, Spare_23, Spare_24, Spare_25, Spare_26,
Spare_27, Spare_28, Spare_29, Cc_Rt, Reserved_31);

Not available in demo configuration? –
Stub to
X_EXECUTIVE_CONTROL.A1_DATA.
DISP_20_HZ_PERIPHERAL_DATA_
INVALID(D_MPDP_PACKING_PIM.PI
M.GPIO)=False
X_EXECUTIVE_CONTROL.A1_DATA.
DISP_20_HZ_PERIPHERAL_DATA_
INVALID(MPDPB)=False

X_EXECUTIVE_CONTROL DISCRETE_INPUTS : Discrete_Inputs_Type;
type Discrete_Inputs_Type is array
(Discrete_Inputs_Index) of Boolean;
 for Discrete_Inputs_Type'Size use 16;
type Discrete_Inputs_Index is (Aiu1_Go, Unused_2, E1,
Unused_4, Unused_5, Unused_6, Unused_7, Unused_8,
Unused_9, Unused_10, Unused_11, Unused_12,
Unused_13, Unused_14, Unused_15, Unused_16);

Stub
X_EXECUTIVE_CONTROL.PIM.DISC
RETE_INPUTS(E1) = TRUE

X_EXECUTIVE_CONTROL AV_PERIPHERAL_DATA_INVALID :
 Av_Peripheral_Data_Invalid_Type;
type Av_Peripheral_Data_Invalid_Type is array
(Av_Peripheral_Type) of Boolean;
 for Av_Peripheral_Data_Invalid_Type'Size use 32;
type Av_Peripheral_Type is (Reserved_0, Redu,
Spare_2, Spare_3, Gps, Ins, Spare_6, Spare_7, Sfdr,
Ledu, Radar, Rwr, Reserved_Mpdp, Spare_13,
Spare_14, Ics, Spare_16, Map, Aiu1A, Aiu1B, Aiu2,
Nav_Pod, Tgt_Pod, Afcs, Adp, Spare_25, Spare_26,
Spare_27, Spare_28, Si, Cc_Rt, Reserved_31);

Not available in demo configuration? --
Stub to
X_EXECUTIVE_CONTROL.AI_DATA.
AV_PERIPHERAL_DATA_INVALID(IN
S) = False
X_EXECUTIVE_CONTROL.AI_DATA.
AV_PERIPHERAL_DATA_INVALID(A
FCS) = False

103

F-15 OWS PIM F-15 COFP
D_DISPLAY_MGMT_PIM FORMAT_LOCATION_INDICATOR_ARRAY(OWS) :

 Format_Location_Indicator_Array_Type;
type Format_Location_Indicator_Array_Type is
 array (Cmt.Format_Type) of Cmt.Du_Location_Type;
subtype Format_Type is Format_Codes_Type range
None .. Srad;
type Format_Codes_Type is
 -- MENU 1 FORMATS
 (None, -- 0 also HUD
 Eadi, -- 1
 Armt, -- 2
 Ehsi, -- 3
 Tf_Rdr, -- 4
 Tsd, -- 5
 Menu_1_Pb_6_Reserved, -- 6
 Menu_1_Pb_7_Reserved, -- 7
 Menu_1_Pb_8_Spare, -- 8
 Menu_1_Pb_9_Spare, -- 9
 Vtrs, -- 10
 Menu_2, -- 11
 Tgt_Ir, -- 12
 Tews, -- 13
 Ag_Rdr, -- 14
 Aa_Rdr, -- 15
 Menu_1_Pb_16_Spare, -- 16
 Hud_Repeater, -- 17
 Eng, -- 18
 Event, -- 19
 Bit, -- 20

 -- MENU 2 FORMATS

 Wind_Model, -- 21
 Ag_Delivery, -- 22
 Menu_2_Pb_3_Spare, -- 23
 Menu_2_Pb_4_Spare, -- 24
 Data_Frame, -- 25
 Menu_2_Pb_6_Reserved, -- 26
 Menu_2_Pb_7_Reserved, -- 27
 Menu_2_Pb_8_Spare, -- 28
 Menu_2_Pb_9_Spare, -- 29
 Ows, -- 30
 Menu_1, -- 31
 Menu_2_Pb_12_Spare, -- 32
 Menu_2_Pb_13_Spare, -- 33
 Menu_2_Pb_14_Spare, -- 34
 Menu_2_Pb_15_Spare, -- 35
 Vid_8, -- 36
 Hud_Prog, -- 37
 Vid_5, -- 38
 Dtm, -- 39
 Vid_2, -- 40

 -- FORMATS NOT ON MENU

 Srad, Spare42, Spare43, Spare44, Spare45, Spare46,
Spare47, Spare48, Spare49, Spare50, Spare51,
Spare52, Spare53, Spare54, Spare55, Spare56,
Spare57, Spare58, Spare59, Spare60, Spare61,
Spare62, Spare63);
subtype Du_Location_Type is
Refresh_Bufr_Location_Type range None .. Du7;
type Refresh_Bufr_Location_Type is (None, Du0, Hud,
Du2, Du3, Du4, Du5, Du6, Du7, Macro_Subs, Cautions);

Not available in demo configuration –
Stub to =NONE

104

F-15 OWS PIM F-15 COFP
D_DISPLAY_MGMT_PIM DISPLAY_BUFFER_ARRAY.

PUSHBUTTON_DEPRESSION_NUMBER
Display_Buffer_Array : Display_Buffer_Array_Type;
type Display_Buffer_Array_Type is array (Cmt.Du_Type)
of Display_Buffer_Type;
subtype Du_Type is Du_Location_Type range Du0 .. Du7;
subtype Du_Location_Type is
Refresh_Bufr_Location_Type range None .. Du7;
type Refresh_Bufr_Location_Type is (None, Du0, Hud,
Du2, Du3, Du4, Du5, Du6, Du7, Macro_Subs, Cautions);
Pushbutton_Depression_Number :
Mpdpt.Du_Pushbutton_Type;
subtype Du_Pushbutton_Type is Du_Switch_Code_Type
range None .. Pb_20;
type Du_Switch_Code_Type is (None, Pb_1, Pb_2,
Pb_3, Pb_4, Pb_5, Pb_6, Pb_7, Pb_8, Pb_9, Pb_10,
Pb_11, Pb_12, Pb_13, Pb_14, Pb_15, Pb_16, Pb_17,
Pb_18, Pb_19, Pb_20, Spare_21, Spare_22, Spare_23,
Bright_Increase, Bright_Decrease, Contrast_Increase,
Contrast_Decrease, Spare_28, Spare_29, Spare_30,
Initiated_Bit);

Not available in demo configuration. It
will not be accessed if
FORMAT_LOCATION_INDICATOR_A
RRAY(OWS)==NONE. Can be stubbed
to =CLR for completeness, but not
required.

N_ENGINE_MONITOR_05HZ
_PIM

IPE_INSTALLED : Boolean; A5EDU.h(80): XTypes::UInt16
GetTypeOfEngine();
Compare: theLEDU_Ptr-
>GetTypeOfEngine()==PW229 And
theREDU_Ptr-
>GetTypeOfEngine()==PW229
If both are true, IPE_INSTALLED =
True, else False

105

Appendix C. Sample WrapidH C++ Listing

/**
File generated by WrapidH, version 1.1
***/
#include "D_OWS_10_HZ_C_PIM.h"
#include "D_OWS_20_HZ_C_PIM.h"
#include "A5ADP.h" Uses the Host’s ADP aircraft state data
#include "D_ADC_C_PIM.h"
#include "D_AFCS_C_PIM.h"
#include "A5AFCS.h"
#include "D_MPDP_C_PIM.h"
#include "BQualityDouble.h"
#include "A5AIU.h"
#include "D_AIU_C_PIM.h"
#include "A5EDU.h"
#include "N_ENGINE_MONITOR_05HZ_C_PIM.h"
#include "A5UPACS.h"
#include "D_PACS_C_PIM.h"
#include "A5WeightOffWheels.h"
#include "D_GEN_20HZ_C_PIM.h"
#include "A5INS.h"
#include "BAnglePiOver2.h"
#include "D_INS_C_PIM.h"
#include "D_OWS_TYPES.h"
#include "U_BASIC_DATA_TYPES.h"
#include "INTERFACES.C.h"
#include "U_NUMBER_TYPES.h"
#include "XTypes.h"
#include "Unknown.h"
#include "A5AIU2_Types.h"
#include "A5ADP_Device.h"
#include "A5AFCS_Device.h"
#include "A5AIU_Device.h"
#include "A5EDU_Device.h"
#include "A5UPACS_Device.h"
#include "A5WeightOffWheels_Device.h"
#include "A5INS_Device.h"
#include "OWS_Wrapper.h" Uses the top-level wrapper
class OWS_Wrapper {
public:
OWS_Wrapper();
Boolean GetAOA_THRESHOLD_EXCEEDED();
FIXED_POINT_SHORT_SCALE_17_TYPE GetBIT_AUDIT_TOTAL_AIRCRAFT_WEIGHT();
Boolean GetCAU_FAILURE_DETECTED();
Boolean GetCAU_FAILURE_DETECTED_THIS_PASS();
G_ACCEL GetCAU_NZ_LOAD_FACTOR_INPUT();
Boolean GetCAU_NZ_MONITOR_ON();
CFT_TABLE_TYPE GetCFT_FUEL_WEIGHT();
C_float GetCFT_NZ_ALLOWABLE();
CFT_TABLE_INDEX_TYPE GetCFT_TABLE_INDEX();
CFT_TABLE_TYPE GetCFT_TOTAL_WEIGHT();
WARNING_RATIO_TYPE GetCFT_WARNING_RATIO();
DECIMAL_DEGREES GetDECIMAL_AOA();
INTEGER_SHORT GetDEFAULT_AOA_TONE_LIMIT();
Boolean GetDISPLAY_BLANKS_FOR_AOA();
POUNDS_PER_SQUARE_FOOT GetDYNAMIC_PRESSURE();
FLAG_TYPE_FOR_DTM_WRITE GetEND_OF_EVENT_FOR_DTM_WRITE();
Boolean GetFIRST_CAU_FILTER_PASS();
C_float GetFWD_FUSELAGE_NZ_ALLOWABLE();
C_float GetFWD_FUSELAGE_WARN_RATIO();
Boolean GetGOTO_END_OF_CALC_MASS_ITEMS();
Boolean GetHUD_INVALID_ARMT_DISP();
Boolean GetINFLIGHT_INVALID_ARMT_DISP();
Boolean GetINS_GROUND_ALIGN_COMPLETE();
G_ACCEL GetINS_NZ_LOAD_FACTOR_INPUT();
G_ACCEL GetLAST_PASS_CAU_FILTER_OUTPUT();
G_ACCEL GetLAST_PASS_CAU_NZ();
G_ACCEL GetLAST_PASS_INS_FILTER_OUTPUT();
POUNDS GetLAST_PASS_LATERAL_STICK();

106

G_ACCEL GetLAST_PASS_NORMAL_ACCELERATION();
Boolean GetLATCH_CAU_FAILURE();
WARNING_RATIO_TYPE GetLEFT_TAIL_WARNING_RATIO();
Boolean GetLOAD_FACTOR_IS_VALID();
C_float GetMASS_ITEMS_WARN_RATIO();
REAL GetMAX_NEGATIVE_MAGNITUDE_G();
REAL GetMAX_POSITIVE_MAGNITUDE_G();
RECALL_DATA_COMPONENT_TYPE GetMOST_RECENT_DISPLAY_INDEX();
REAL GetMOST_RECENT_DISPLAY_NZ(); Declares the sample variable
WARNING_RATIO_TYPE GetMOST_RECENT_DISPLAY_RATIO();
Boolean GetNAV_LANTIRN_POD_ON_BOARD();
FLAG_TYPE_FOR_DTM_WRITE GetNEW_PEAK_FOUND_FOR_DTM_WRITE();
NZ_RECALL_TABLE_TYPE GetNZ_RECALL_TABLE();
Boolean GetNZ_SOURCES_INVALID();
Boolean GetOWS_CLEAR_ENABLED_FLAG();
OWS_FUEL_VALIDITY_TYPE GetOWS_FUEL_VALIDITY_FLAG();
OWS_VALIDITY_TYPE GetOWS_VALIDITY_FLAG();
OWS_20HZ_VALIDITY_TYPE GetOWS_VALIDITY_FLAG();
Boolean GetOWS_WARN_RATIO_THRESHOLD_EXCEEDED();
REAL GetPYLON_NZ_ALLOWABLE();
WARNING_RATIO_TYPE GetPYLON_WARNING_RATIO();
Boolean GetRESET_DTM_MAX_RATIO_VARIABLES();
Boolean GetRESET_MANUAL_CLEAR_FLAGS();
Boolean GetRESET_MAX_MIN_G_VALUES();
Boolean GetRESET_RECALL_TABLE_FLAGS();
Boolean GetRESET_VOICE_COUNTER();
WARNING_RATIO_TYPE GetRIGHT_TAIL_WARNING_RATIO();
Boolean GetSET_ASP_LATCH_FOR_INVALID_ARMT();
STATION_WEIGHT_TABLE_TYPE GetSTATION_WEIGHT();
Boolean GetTGT_LANTIRN_POD_ON_BOARD();
POUNDS GetTOTAL_AIRCRAFT_WEIGHT();
POUNDS GetTOTAL_OLD_FUEL_WEIGHT();
WARNING_RATIO_RECALL_TABLE_TYPE GetWARNING_RATIO_RECALL_TABLE();
REAL GetWING_C_CONST_MODIFIER();
REAL GetWING_NZ_ALLOWABLE();
WARNING_RATIO_TYPE GetWING_WARNING_RATIO();
void Initialize(); Declares the four major wrapper processes
void PERFORM_OWS_10HZ_NZ_WARN_Wrapper();
void PERFORM_OWS_10_Hz_Wrapper();
void PERFORM_OWS_20HZ_Wrapper();
private:
void register_interest_in_events(); Declares the registration for wrapper execution events
};
OWS_Wrapper::OWS_Wrapper():
theA5ADP_ptr_(A5ADP_Device::Instance()), Establishes the ADP data instance
theA5AFCS_ptr_(A5AFCS_Device::Instance()),
theA5AIU_ptr_(A5AIU_Device::Instance()),
theA5EDU_ptr_(A5EDU_Device::Instance()),
theA5UPACS_ptr_(A5UPACS_Device::Instance()),
theA5WeightOffWheels_ptr_(A5WeightOffWheels_Device::Instance()),
theA5INS_ptr_(A5INS_Device::Instance())
{
};
REAL OWS_Wrapper::GetMOST_RECENT_DISPLAY_NZ() Sample variable processing
{
REAL temp37;
temp37 = PIM.MOST_RECENT_DISPLAY_NZ;
return temp37;
};
void OWS_Wrapper::PERFORM_OWS_20HZ_Wrapper() 20 Hz wrapper processing
{
ADC_C_PIM.mach_number = (theA5ADP_ptr_->GetMach())->GetValue(); Gets current Mach No. from Host
ADC_C_PIM.local_angle_of_attack = (theA5ADP_ptr_->GetLocalAngleOfAttack())->GetAngle();
ADC_C_PIM.local_angle_of_attack_valid = (theA5ADP_ptr_->GetLocalAngleOfAttack())->IsValid();
ADC_C_PIM.baro_corrected_pressure_altitude = (theA5ADP_ptr_->GetBaroCorrectedPressureAltitude())->GetValue();
ADC_C_PIM.true_angle_of_attack = (theA5ADP_ptr_->GetTrueAngleOfAttack())->GetAngle();
ADC_C_PIM.pressure_ratio = (theA5ADP_ptr_->GetPressureRatio())->GetValue();
AFCS_C_PIM.landing_gear_handle_is_up = theA5AFCS_ptr_->GetLandingGearHandleIsUp();
AFCS_C_PIM.lateral_stick_force = (theA5AFCS_ptr_->GetLateralStickForce())->GetValue();
AFCS_C_PIM.lateral_stick_force_is_valid = theA5AFCS_ptr_->GetLateralStickForceIsValid();
AFCS_C_PIM.left_stab_main_ram_pos_is_valid = theA5AFCS_ptr_->GetLeftStabMainRamPosIsValid();
AFCS_C_PIM.l_h_stabilator_ram_position = (theA5AFCS_ptr_->GetLH_StabRamPosition())->GetValue();

107

AFCS_C_PIM.r_h_stabilator_ram_position = (theA5AFCS_ptr_->GetRH_StabRamPosition())->GetValue();
AFCS_C_PIM.right_stab_main_ram_pos_is_valid = theA5AFCS_ptr_->GetRightStabMainRamPosIsValid();
AFCS_C_PIM.roll_rate = (theA5AFCS_ptr_->GetRollRate())->GetValue();
AFCS_C_PIM.roll_rate_is_valid = theA5AFCS_ptr_->GetRollRateIsValid();
AFCS_C_PIM.spin_recovery_display = theA5AFCS_ptr_->GetSpinRecoveryDisplay();
AFCS_C_PIM.yaw_rate = (theA5AFCS_ptr_->GetYawRate())->GetValue();
AFCS_C_PIM.yaw_rate_is_valid = theA5AFCS_ptr_->GetYawRateIsValid();
AFCS_C_PIM.yaw_rate_tone_priority = theA5AFCS_ptr_->GetYawRateTonePriority();
MPDP_C_PIM.cau_normal_acceleration = (theA5AFCS_ptr_->GetNormalAcceleration())->GetValue();
INS_C_PIM.normal_acceleration = (theA5INS_ptr_->GetNormalAcceleration())->GetValue();
OWS_20HZ_PIM_TRANSFER__OWS_20HZ_Transfer_To_Ada(); Transfers C PIM data to Ada PIMs
};

108

Appendix D. Sample WrapidH Ada Listing

-- File generated by WrapidH, version 1.1

WITH D_ADC_C_PIM; Uses Wrapper ADC PIM loaded by processing above (Mach No., etc.)
WITH D_ADC_20HZ_INPUT_PIM; Uses Legacy OWS ADC data input PIM
WITH D_AFCS_C_PIM;
WITH D_AFCS_20HZ_INPUT_PIM;
WITH D_MPDP_C_PIM;
WITH D_INS_C_PIM;
WITH D_INS_20HZ_INPUT_PIM;
WITH D_MPDP_20HZ_INPUT_PIM;
WITH D_HUD_CONTROL_PIM;
WITH D_GEN_20HZ_UNPACK_PIM;
WITH D_GEN_10HZ_UNPACK_PIM;
WITH D_OWS_20_HZ;
WITH D_OWS_20_HZ_PIM; Uses Legacy OWS output PIM
WITH D_OWS_20_HZ_C_PIM; Uses Wrapper output PIM that receives data for transfer
WITH OWS_Stubs;
WITH U_NUMBER_TYPES;
WITH INTERFACES.C; Uses C / Ada interfaces
WITH U_BASIC_DATA_TYPES;
WITH U_MPDP_TYPES;
PACKAGE OWS_20HZ_PIM_TRANSFER IS
 PROCEDURE OWS_20HZ_Transfer_To_Ada;
 PRAGMA EXPORT(C, OWS_20HZ_Transfer_To_Ada, "OWS_20HZ_PIM_TRANSFER__OWS_20HZ_Transfer_To_Ada");
END OWS_20HZ_PIM_TRANSFER;
PACKAGE BODY OWS_20HZ_PIM_TRANSFER IS
 PROCEDURE OWS_20_HZ_Copy_Outputs IS
 BEGIN
 D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PIM.MAX_NEGATIVE_MAGNITUDE_G :=
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.MAX_NEGATIVE_MAGNITUDE_G);
 D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PIM.MAX_POSITIVE_MAGNITUDE_G :=
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.MAX_POSITIVE_MAGNITUDE_G);
 D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PIM.MOST_RECENT_DISPLAY_NZ :=
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.MOST_RECENT_DISPLAY_NZ); Interface OWS output to Wrapper
 D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PIM.NZ_RECALL_TABLE :=
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.NZ_RECALL_TABLE);
 D_OWS_20_HZ_C_PIM.OWS_20_HZ_C_PIM.WARNING_RATIO_RECALL_TABLE :=
INTERFACES.C.C_float(D_OWS_20_HZ_PIM.PIM.WARNING_RATIO_RECALL_TABLE);
 END OWS_20_HZ_Copy_Outputs;
 PROCEDURE OWS_20HZ_Transfer_To_Ada IS
 temp65 : U_MPDP_TYPES.GP_ROTATING_BIT_PATTERN_TYPE;
 BEGIN
 D_ADC_20HZ_INPUT_PIM.PIM.TRUE_ANGLE_OF_ATTACK :=
U_BASIC_DATA_TYPES.ELEVATION_TYPE(D_ADC_C_PIM.ADC_C_PIM.true_angle_of_attack);
 D_ADC_20HZ_INPUT_PIM.PIM.MACH_NUMBER :=
U_NUMBER_TYPES.REAL(D_ADC_C_PIM.ADC_C_PIM.mach_number); Copy Wrapper Mach No. into OWS input PIM
 D_ADC_20HZ_INPUT_PIM.PIM.PRESSURE_RATIO :=
U_NUMBER_TYPES.REAL(D_ADC_C_PIM.ADC_C_PIM.pressure_ratio);
 D_ADC_20HZ_INPUT_PIM.PIM.BARO_CORRECTED_PRESSURE_ALTITUDE :=
U_NUMBER_TYPES.REAL(D_ADC_C_PIM.ADC_C_PIM.baro_corrected_pressure_altitude);
 D_ADC_20HZ_INPUT_PIM.PIM.LOCAL_ANGLE_OF_ATTACK :=
U_NUMBER_TYPES.REAL(D_ADC_C_PIM.ADC_C_PIM.local_angle_of_attack);
 D_ADC_20HZ_INPUT_PIM.PIM.LOCAL_ANGLE_OF_ATTACK_VALID :=
Boolean(D_ADC_C_PIM.ADC_C_PIM.local_angle_of_attack_valid);
 D_AFCS_20HZ_INPUT_PIM.PIM.R_H_STABILATOR_RAM_POSITION :=
U_NUMBER_TYPES.REAL(D_AFCS_C_PIM.AFCS_C_PIM.r_h_stabilator_ram_position);
 D_AFCS_20HZ_INPUT_PIM.PIM.L_H_STABILATOR_RAM_POSITION :=
U_NUMBER_TYPES.REAL(D_AFCS_C_PIM.AFCS_C_PIM.l_h_stabilator_ram_position);
 D_AFCS_20HZ_INPUT_PIM.PIM.ROLL_RATE := U_NUMBER_TYPES.REAL(D_AFCS_C_PIM.AFCS_C_PIM.roll_rate);
 D_AFCS_20HZ_INPUT_PIM.PIM.MODE_DISCRETE_WORD.LANDING_GEAR_HANDLE_IS_UP :=
Boolean(D_AFCS_C_PIM.AFCS_C_PIM.landing_gear_handle_is_up);
 D_AFCS_20HZ_INPUT_PIM.PIM.MODE_DISCRETE_WORD.YAW_RATE_TONE_PRIORITY :=
Boolean(D_AFCS_C_PIM.AFCS_C_PIM.yaw_rate_tone_priority);
 D_AFCS_20HZ_INPUT_PIM.PIM.MODE_DISCRETE_WORD.SPIN_RECOVERY_DISPLAY :=
Boolean(D_AFCS_C_PIM.AFCS_C_PIM.spin_recovery_display);
 D_AFCS_20HZ_INPUT_PIM.PIM.VALIDITY_WORD.YAW_RATE_IS_VALID :=
Boolean(D_AFCS_C_PIM.AFCS_C_PIM.yaw_rate_is_valid);
 D_AFCS_20HZ_INPUT_PIM.PIM.VALIDITY_WORD.ROLL_RATE_IS_VALID :=

109

Boolean(D_AFCS_C_PIM.AFCS_C_PIM.roll_rate_is_valid);
 D_MPDP_20HZ_INPUT_PIM.PIM.CAU_NORMAL_ACCELERATION :=
U_NUMBER_TYPES.REAL(D_MPDP_C_PIM.MPDP_C_PIM.cau_normal_acceleration);
 D_INS_20HZ_INPUT_PIM.PIM.NORMAL_ACCELERATION :=
U_NUMBER_TYPES.REAL(D_INS_C_PIM.INS_C_PIM.normal_acceleration);
 D_HUD_CONTROL_PIM.PIM.AOA_LIMIT.DISPLAYED_VALUE := U_NUMBER_TYPES.INTEGER_SHORT(1.0);
 D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(TRUE_AOA) := Boolean(FALSE);
 D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(LOCAL_AOA) := Boolean(FALSE);
 D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(MACH_NUMBER) := Boolean(FALSE);
 D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(PRESSURE_RATIO) := Boolean(FALSE);
 D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(BARO_CORR_PRESS_ALTITUDE) :=
Boolean(FALSE);
 D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(PRESSURE_ALTITUDE) := Boolean(FALSE);
 D_GEN_20HZ_UNPACK_PIM.PIM.SPIKE_CHECK_DATA_IS_SPIKED(NORMAL_ACCELERATION) := Boolean(FALSE);
 D_GEN_10HZ_UNPACK_PIM.PIM.CFT_STATUS_FLAG := D_GEN_10HZ_UNPACK_PIM.CFT_TYPE(CFT_4);
 temp65 :=
OWS_Stubs.Next_GP_ROTATING_BIT_PATTERN(D_MPDP_20HZ_INPUT_PIM.PIM.GP_ROTATING_BIT_PATTERN);
 D_OWS_20_HZ.PERFORM_OWS_20HZ; Execute the Legacy OWS 20 Hz processing
 OWS_20HZ_Transfer_To_Ada.OWS_20_HZ_Copy_Outputs; Copy the Legacy outputs to the wrapper
 END OWS_20HZ_Transfer_To_Ada;
END OWS_20HZ_PIM_TRANSFER;

